Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,997 Bytes
cd58335 42eccb2 c54d478 ec3c4e8 c54d478 ec3c4e8 718bcd6 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 718bcd6 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 718bcd6 ec3c4e8 718bcd6 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Thanks: https://huggingface.co/spaces/stabilityai/stable-diffusion-3-medium
import os
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
device = "cuda"
dtype = torch.float16
repo = "stabilityai/stable-diffusion-3-medium"
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16, revision="refs/pr/26",token=os.environ["TOKEN"]).to(device)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 300,
"return_full_text": False,
"temperature": 0.7,
"do_sample": True,
}
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1344
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
messages = [
{"role": "user", "content": "クールなアニメ風の少女"},
{"role": "assistant", "content": "An anime style illustration of a cool-looking teenage girl with an edgy, confident expression. She has piercing eyes, a slight smirk, and colorful hair that flows in the wind. She wears a trendy punk-inspired outfit with a leather jacket, ripped jeans, and combat boots. The background has an urban nighttime feel with city lights and graffiti to match her rebellious vibe. The colors are vibrant with high contrast to give an impactful look. The overall style captures her undeniable coolness and fearless attitude."},
{"role": "user", "content": "美味しそうな肉"},
{"role": "assistant", "content": "A gourmet scene in a high-end restaurant kitchen where a chef is presenting a plate of cooked beef testicles, garnished elegantly with herbs and spices. The chef, a middle-aged Caucasian man wearing a white chef's hat and coat, is inspecting the dish with a satisfied expression. The kitchen background is bustling with other chefs and kitchen staff, and the atmosphere is warm and inviting with hanging pots and pans, and a glowing, busy stove in the background. The focus is on the chef's proud presentation of this unusual but delicately prepared dish."},
{"role": "user", "content": prompt},
]
output = pipe(messages, **generation_args)
upsampled_prompt=output[0]['generated_text']
image = pipe(
prompt = upsampled_prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# 日本語が入力できる [SD3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |