Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,557 Bytes
cd58335 42eccb2 c54d478 ec3c4e8 c54d478 ec3c4e8 718bcd6 c54d478 ec3c4e8 c54d478 ec3c4e8 4b94657 c54d478 ec3c4e8 c54d478 94d1cb1 dc3aa6a 4b94657 718bcd6 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 c54d478 ec3c4e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# Thanks: https://huggingface.co/spaces/stabilityai/stable-diffusion-3-medium
import os
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
device = "cuda"
dtype = torch.float16
repo = "stabilityai/stable-diffusion-3-medium"
t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16, revision="refs/pr/26",token=os.environ["TOKEN"]).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1344
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
upsampled_prompt="An anime style illustration of a cool-looking teenage girl with an edgy, confident expression. She has piercing eyes, a slight smirk, and colorful hair that flows in the wind. She wears a trendy punk-inspired outfit with a leather jacket, ripped jeans, and combat boots. The background has an urban nighttime feel with city lights and graffiti to match her rebellious vibe. The colors are vibrant with high contrast to give an impactful look. The overall style captures her undeniable coolness and fearless attitude."
print(upsampled_prompt)
image = t2i(
prompt = upsampled_prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# ζ₯ζ¬θͺγε
₯εγ§γγ [SD3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |