alexrods
add subheader to describe space in app.py
de532ae
raw
history blame
3.48 kB
import numpy as np
import tensorflow as tf
import streamlit as st
from PIL import Image
from huggingface_hub import from_pretrained_keras
import cv2
model = from_pretrained_keras("keras-io/deeplabv3p-resnet50")
colormap = np.array([[0,0,0], [31,119,180], [44,160,44], [44, 127, 125], [52, 225, 143],
[217, 222, 163], [254, 128, 37], [130, 162, 128], [121, 7, 166], [136, 183, 248],
[85, 1, 76], [22, 23, 62], [159, 50, 15], [101, 93, 152], [252, 229, 92],
[167, 173, 17], [218, 252, 252], [238, 126, 197], [116, 157, 140], [214, 220, 252]], dtype=np.uint8)
img_size = 512
def read_image(image):
image = tf.convert_to_tensor(image)
image.set_shape([None, None, 3])
image = tf.image.resize(images=image, size=[img_size, img_size])
image = image / 127.5 - 1
return image
def infer(model, image_tensor):
predictions = model.predict(np.expand_dims((image_tensor), axis=0))
predictions = np.squeeze(predictions)
predictions = np.argmax(predictions, axis=2)
return predictions
def decode_segmentation_masks(mask, colormap, n_classes):
r = np.zeros_like(mask).astype(np.uint8)
g = np.zeros_like(mask).astype(np.uint8)
b = np.zeros_like(mask).astype(np.uint8)
for l in range(0, n_classes):
idx = mask == l
r[idx] = colormap[l, 0]
g[idx] = colormap[l, 1]
b[idx] = colormap[l, 2]
rgb = np.stack([r, g, b], axis=2)
return rgb
def get_overlay(image, colored_mask):
image = tf.keras.preprocessing.image.array_to_img(image)
image = np.array(image).astype(np.uint8)
overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)
return overlay
def segmentation(input_image):
image_tensor = read_image(input_image)
prediction_mask = infer(image_tensor=image_tensor, model=model)
prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20)
overlay = get_overlay(image_tensor, prediction_colormap)
return (overlay, prediction_colormap)
st.header("Segmentaci贸n de partes del cuerpo humano")
st.subheader("Demo de Spaces usando Streamlit y segmentacion de imagenes [Space original](https://huggingface.co/spaces/PKaushik/Human-Part-Segmentation)")
st.markdown("Sube una imagen o selecciona un ejemplo para segmentar las distintas partes del cuerpo humano")
file_imagen = st.file_uploader("Sube aqu铆 tu imagen", type=["png", "jpg", "jpeg"])
examples = ["example_image_1.jpg", "example_image_2.jpg", "example_image_3.jpg"]
col1, col2, col3 = st.columns(3)
with col1:
ex1 = Image.open(examples[0])
st.image(ex1, width=200)
if st.button("Corre ejemplo 1"):
file_imagen = examples[0]
with col2:
ex2 = Image.open(examples[1])
st.image(ex2, width=200)
if st.button("Corre ejemplo 2"):
file_imagen = examples[1]
with col3:
ex3 = Image.open(examples[2])
st.image(ex3, width=200)
if st.button("Corre ejemplo 3"):
file_imagen = examples[2]
if file_imagen is not None:
img = Image.open(file_imagen)
output = segmentation(img)
if output is not None:
st.subheader("Original: ")
st.image(img, width=850)
col1, col2 = st.columns(2)
with col1:
st.subheader("Segmentaci贸n: ")
st.image(output[0], width=425)
with col2:
st.subheader("Mask: ")
st.image(output[1], width=425)