alexrods's picture
Update inference.py
8ab7bd5
raw
history blame
698 Bytes
import torch
from torchtext.data.utils import get_tokenizer
from model_arch import TextClassifierModel, load_state_dict
model_trained = torch.load('model_checkpoint.pth')
vocab = torch.load('vocab.pt')
tokenizer = get_tokenizer("spacy", language="es")
text_pipeline = lambda x: vocab(tokenizer(x))
num_class = 11
vocab_size = len(vocab)
embed_size = 300
model = TextClassifierModel(vocab_size, embed_size, num_class)
model = load_state_dict(model, model_trained, vocab)
def predict(text, model=model, text_pipeline=text_pipeline):
with torch.no_grad()
model.eval()
text_tensor = torch.tensor(text_pipeline(text))
return model(text_tensor, torch.tensor([0])).argmax(1).item()