# import tempfile # import streamlit as st import gradio as gr from prediction import smartcities # # Streamlit Interface # st.header("Smart City Cars and Bikes detection") # st.markdown("Upload a video or select the example") # ## Select video to inference # file_video = str # f = st.file_uploader(" Upload a video ", type=["mp4"]) # if f is not None: # tfile = tempfile.NamedTemporaryFile(delete=False) # tfile.write(f.read()) # file_video = tfile.name # if st.button("example"): # file_video = "test_video.mp4" # ## Process video # if file_video is not None: # sc = smartcities() # output = sc.predict(file_video) # col1, col2 = st.columns(2) # if output is not None: # with col1: # st.subheader("Input: ") # # video = open(file_video, "wb") # # video_bytes = video.read() # # st.video(video, format="video/mp4") # # st.video(video_bytes) # with col2: # st.subheader("Output: ") # output_video = open(output, "rb") # output_bytes = output_video.read() # st.video(output_bytes, format="video/mp4") # st.download_button("Download", output_bytes, file_name="output_video.mp4", mime="video/mp4") def object_detection(input): sc = smartcities() output = sc.predict(input) demo = gr.Interface.load(object_detection, input="video", output="video") demo.launch()