Update prediction.py
Browse files- prediction.py +4 -4
prediction.py
CHANGED
@@ -19,10 +19,10 @@ class smartcities:
|
|
19 |
detect_fn = tf.saved_model.load("model/saved_model")
|
20 |
self.detect_fn = detect_fn
|
21 |
|
22 |
-
def predict(self):
|
23 |
# Ruta del video (Se debe cargar de manera manual)
|
24 |
-
PATH_VIDEO = "/tmp/in_video.mp4"
|
25 |
-
video_result = open(PATH_VIDEO, "wb")
|
26 |
# video_result.write(base64.b64decode(image_64_decode))
|
27 |
|
28 |
# Ruta del video en donde almacenaremos los resultados
|
@@ -35,7 +35,7 @@ class smartcities:
|
|
35 |
TRESHOLD = 0.5
|
36 |
|
37 |
# Cargamos el video
|
38 |
-
vs = cv2.VideoCapture(
|
39 |
|
40 |
# Inicializamos el writer para poder guardar el video
|
41 |
writer = None
|
|
|
19 |
detect_fn = tf.saved_model.load("model/saved_model")
|
20 |
self.detect_fn = detect_fn
|
21 |
|
22 |
+
def predict(self, input):
|
23 |
# Ruta del video (Se debe cargar de manera manual)
|
24 |
+
# PATH_VIDEO = "/tmp/in_video.mp4"
|
25 |
+
# video_result = open(PATH_VIDEO, "wb")
|
26 |
# video_result.write(base64.b64decode(image_64_decode))
|
27 |
|
28 |
# Ruta del video en donde almacenaremos los resultados
|
|
|
35 |
TRESHOLD = 0.5
|
36 |
|
37 |
# Cargamos el video
|
38 |
+
vs = cv2.VideoCapture(input)
|
39 |
|
40 |
# Inicializamos el writer para poder guardar el video
|
41 |
writer = None
|