File size: 1,178 Bytes
fafde43 b412cbb fafde43 b412cbb fafde43 566921d fafde43 7885d83 fafde43 b412cbb fafde43 250c6f0 fafde43 4ebab5e fafde43 4ebab5e b412cbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import cv2
import tempfile
import streamlit as st
from prediction import smartcities
# Streamlit Interface
st.header("Smart City Cars and Bikes detection")
st.markdown("Upload a video or select the example")
## Select video to inference
file_video = str
f = st.file_uploader(" Upload a video ", type=["mp4"])
if f is not None:
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(f.read())
file_video = tfile.name
if st.button("example"):
file_video = "test_video.mp4"
## Process video
if file_video is not None:
sc = smartcities()
output = sc.predict(file_video)
col1, col2 = st.columns(2)
if output is not None:
with col1:
st.subheader("Input: ")
video = open(file_video, "rb")
video_bytes = video.read()
st.video(video_bytes, format="video/mp4")
with col2:
st.subheader("Output: ")
output_video = open(output, "rb")
output_bytes = output_video.read()
st.video(output_bytes, format="video/mp4")
st.download_button("Download", output_bytes, file_name="output_video.mp4", mime="video/mp4")
|