Spaces:
Running
on
Zero
Running
on
Zero
Update pipelines/pipeline_seesr.py
Browse files
pipelines/pipeline_seesr.py
CHANGED
@@ -971,7 +971,7 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade
|
|
971 |
prompt_embeds, ram_encoder_hidden_states = self._encode_prompt(
|
972 |
prompt,
|
973 |
device,
|
974 |
-
num_images_per_prompt
|
975 |
do_classifier_free_guidance,
|
976 |
negative_prompt,
|
977 |
prompt_embeds=prompt_embeds,
|
@@ -984,7 +984,7 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade
|
|
984 |
image=image,
|
985 |
width=width,
|
986 |
height=height,
|
987 |
-
batch_size=batch_size * num_images_per_prompt
|
988 |
num_images_per_prompt=num_images_per_prompt,
|
989 |
device=device,
|
990 |
dtype=controlnet.dtype,
|
@@ -999,7 +999,7 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade
|
|
999 |
# 6. Prepare latent variables
|
1000 |
num_channels_latents = self.unet.config.in_channels
|
1001 |
latents = self.prepare_latents(
|
1002 |
-
batch_size * num_images_per_prompt
|
1003 |
num_channels_latents,
|
1004 |
height,
|
1005 |
width,
|
@@ -1024,6 +1024,9 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade
|
|
1024 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1025 |
|
1026 |
if use_KDS:
|
|
|
|
|
|
|
1027 |
latents.requires_grad_(True)
|
1028 |
|
1029 |
# 8. Denoising loop
|
|
|
971 |
prompt_embeds, ram_encoder_hidden_states = self._encode_prompt(
|
972 |
prompt,
|
973 |
device,
|
974 |
+
num_images_per_prompt,
|
975 |
do_classifier_free_guidance,
|
976 |
negative_prompt,
|
977 |
prompt_embeds=prompt_embeds,
|
|
|
984 |
image=image,
|
985 |
width=width,
|
986 |
height=height,
|
987 |
+
batch_size=batch_size * num_images_per_prompt,
|
988 |
num_images_per_prompt=num_images_per_prompt,
|
989 |
device=device,
|
990 |
dtype=controlnet.dtype,
|
|
|
999 |
# 6. Prepare latent variables
|
1000 |
num_channels_latents = self.unet.config.in_channels
|
1001 |
latents = self.prepare_latents(
|
1002 |
+
batch_size * num_images_per_prompt,
|
1003 |
num_channels_latents,
|
1004 |
height,
|
1005 |
width,
|
|
|
1024 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1025 |
|
1026 |
if use_KDS:
|
1027 |
+
latents = latents.repeat_interleave(num_particles, dim=0)
|
1028 |
+
image = image.repeat_interleave(num_particles, dim=0)
|
1029 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_particles, dim=0)
|
1030 |
latents.requires_grad_(True)
|
1031 |
|
1032 |
# 8. Denoising loop
|