Spaces:
Running
on
Zero
Running
on
Zero
Update OmniAvatar/models/model_manager.py
Browse files- OmniAvatar/models/model_manager.py +474 -474
OmniAvatar/models/model_manager.py
CHANGED
@@ -1,474 +1,474 @@
|
|
1 |
-
import os, torch, json, importlib
|
2 |
-
from typing import List
|
3 |
-
import torch.nn as nn
|
4 |
-
from ..configs.model_config import model_loader_configs
|
5 |
-
from ..utils.io_utils import load_state_dict, init_weights_on_device, hash_state_dict_keys, split_state_dict_with_prefix, smart_load_weights
|
6 |
-
|
7 |
-
class GeneralLoRAFromPeft:
|
8 |
-
|
9 |
-
def get_name_dict(self, lora_state_dict):
|
10 |
-
lora_name_dict = {}
|
11 |
-
for key in lora_state_dict:
|
12 |
-
if ".lora_B." not in key:
|
13 |
-
continue
|
14 |
-
keys = key.split(".")
|
15 |
-
if len(keys) > keys.index("lora_B") + 2:
|
16 |
-
keys.pop(keys.index("lora_B") + 1)
|
17 |
-
keys.pop(keys.index("lora_B"))
|
18 |
-
if keys[0] == "diffusion_model":
|
19 |
-
keys.pop(0)
|
20 |
-
target_name = ".".join(keys)
|
21 |
-
lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A."))
|
22 |
-
return lora_name_dict
|
23 |
-
|
24 |
-
|
25 |
-
def match(self, model: torch.nn.Module, state_dict_lora):
|
26 |
-
lora_name_dict = self.get_name_dict(state_dict_lora)
|
27 |
-
model_name_dict = {name: None for name, _ in model.named_parameters()}
|
28 |
-
matched_num = sum([i in model_name_dict for i in lora_name_dict])
|
29 |
-
if matched_num == len(lora_name_dict):
|
30 |
-
return "", ""
|
31 |
-
else:
|
32 |
-
return None
|
33 |
-
|
34 |
-
|
35 |
-
def fetch_device_and_dtype(self, state_dict):
|
36 |
-
device, dtype = None, None
|
37 |
-
for name, param in state_dict.items():
|
38 |
-
device, dtype = param.device, param.dtype
|
39 |
-
break
|
40 |
-
computation_device = device
|
41 |
-
computation_dtype = dtype
|
42 |
-
if computation_device == torch.device("cpu"):
|
43 |
-
if torch.cuda.is_available():
|
44 |
-
computation_device = torch.device("cuda")
|
45 |
-
if computation_dtype == torch.float8_e4m3fn:
|
46 |
-
computation_dtype = torch.float32
|
47 |
-
return device, dtype, computation_device, computation_dtype
|
48 |
-
|
49 |
-
|
50 |
-
def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""):
|
51 |
-
state_dict_model = model.state_dict()
|
52 |
-
device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model)
|
53 |
-
lora_name_dict = self.get_name_dict(state_dict_lora)
|
54 |
-
for name in lora_name_dict:
|
55 |
-
weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype)
|
56 |
-
weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype)
|
57 |
-
if len(weight_up.shape) == 4:
|
58 |
-
weight_up = weight_up.squeeze(3).squeeze(2)
|
59 |
-
weight_down = weight_down.squeeze(3).squeeze(2)
|
60 |
-
weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
61 |
-
else:
|
62 |
-
weight_lora = alpha * torch.mm(weight_up, weight_down)
|
63 |
-
weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype)
|
64 |
-
weight_patched = weight_model + weight_lora
|
65 |
-
state_dict_model[name] = weight_patched.to(device=device, dtype=dtype)
|
66 |
-
print(f" {len(lora_name_dict)} tensors are updated.")
|
67 |
-
model.load_state_dict(state_dict_model)
|
68 |
-
|
69 |
-
|
70 |
-
def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device, infer):
|
71 |
-
loaded_model_names, loaded_models = [], []
|
72 |
-
for model_name, model_class in zip(model_names, model_classes):
|
73 |
-
print(f" model_name: {model_name} model_class: {model_class.__name__}")
|
74 |
-
state_dict_converter = model_class.state_dict_converter()
|
75 |
-
if model_resource == "civitai":
|
76 |
-
state_dict_results = state_dict_converter.from_civitai(state_dict)
|
77 |
-
elif model_resource == "diffusers":
|
78 |
-
state_dict_results = state_dict_converter.from_diffusers(state_dict)
|
79 |
-
if isinstance(state_dict_results, tuple):
|
80 |
-
model_state_dict, extra_kwargs = state_dict_results
|
81 |
-
print(f" This model is initialized with extra kwargs: {extra_kwargs}")
|
82 |
-
else:
|
83 |
-
model_state_dict, extra_kwargs = state_dict_results, {}
|
84 |
-
torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype
|
85 |
-
with init_weights_on_device():
|
86 |
-
model = model_class(**extra_kwargs)
|
87 |
-
if hasattr(model, "eval"):
|
88 |
-
model = model.eval()
|
89 |
-
if not infer: # 训练才初始化
|
90 |
-
model = model.to_empty(device=torch.device("cuda"))
|
91 |
-
for name, param in model.named_parameters():
|
92 |
-
if param.dim() > 1: # 通常只对权重矩阵而不是偏置做初始化
|
93 |
-
nn.init.xavier_uniform_(param, gain=0.05)
|
94 |
-
else:
|
95 |
-
nn.init.zeros_(param)
|
96 |
-
else:
|
97 |
-
model = model.to_empty(device=device)
|
98 |
-
model, _, _ = smart_load_weights(model, model_state_dict)
|
99 |
-
# model.load_state_dict(model_state_dict, assign=True, strict=False)
|
100 |
-
model = model.to(dtype=torch_dtype, device=device)
|
101 |
-
loaded_model_names.append(model_name)
|
102 |
-
loaded_models.append(model)
|
103 |
-
return loaded_model_names, loaded_models
|
104 |
-
|
105 |
-
|
106 |
-
def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device):
|
107 |
-
loaded_model_names, loaded_models = [], []
|
108 |
-
for model_name, model_class in zip(model_names, model_classes):
|
109 |
-
if torch_dtype in [torch.float32, torch.float16, torch.bfloat16]:
|
110 |
-
model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval()
|
111 |
-
else:
|
112 |
-
model = model_class.from_pretrained(file_path).eval().to(dtype=torch_dtype)
|
113 |
-
if torch_dtype == torch.float16 and hasattr(model, "half"):
|
114 |
-
model = model.half()
|
115 |
-
try:
|
116 |
-
model = model.to(device=device)
|
117 |
-
except:
|
118 |
-
pass
|
119 |
-
loaded_model_names.append(model_name)
|
120 |
-
loaded_models.append(model)
|
121 |
-
return loaded_model_names, loaded_models
|
122 |
-
|
123 |
-
|
124 |
-
def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device):
|
125 |
-
print(f" model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}")
|
126 |
-
base_state_dict = base_model.state_dict()
|
127 |
-
base_model.to("cpu")
|
128 |
-
del base_model
|
129 |
-
model = model_class(**extra_kwargs)
|
130 |
-
model.load_state_dict(base_state_dict, strict=False)
|
131 |
-
model.load_state_dict(state_dict, strict=False)
|
132 |
-
model.to(dtype=torch_dtype, device=device)
|
133 |
-
return model
|
134 |
-
|
135 |
-
|
136 |
-
def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device):
|
137 |
-
loaded_model_names, loaded_models = [], []
|
138 |
-
for model_name, model_class in zip(model_names, model_classes):
|
139 |
-
while True:
|
140 |
-
for model_id in range(len(model_manager.model)):
|
141 |
-
base_model_name = model_manager.model_name[model_id]
|
142 |
-
if base_model_name == model_name:
|
143 |
-
base_model_path = model_manager.model_path[model_id]
|
144 |
-
base_model = model_manager.model[model_id]
|
145 |
-
print(f" Adding patch model to {base_model_name} ({base_model_path})")
|
146 |
-
patched_model = load_single_patch_model_from_single_file(
|
147 |
-
state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device)
|
148 |
-
loaded_model_names.append(base_model_name)
|
149 |
-
loaded_models.append(patched_model)
|
150 |
-
model_manager.model.pop(model_id)
|
151 |
-
model_manager.model_path.pop(model_id)
|
152 |
-
model_manager.model_name.pop(model_id)
|
153 |
-
break
|
154 |
-
else:
|
155 |
-
break
|
156 |
-
return loaded_model_names, loaded_models
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
class ModelDetectorTemplate:
|
161 |
-
def __init__(self):
|
162 |
-
pass
|
163 |
-
|
164 |
-
def match(self, file_path="", state_dict={}):
|
165 |
-
return False
|
166 |
-
|
167 |
-
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
168 |
-
return [], []
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
class ModelDetectorFromSingleFile:
|
173 |
-
def __init__(self, model_loader_configs=[]):
|
174 |
-
self.keys_hash_with_shape_dict = {}
|
175 |
-
self.keys_hash_dict = {}
|
176 |
-
for metadata in model_loader_configs:
|
177 |
-
self.add_model_metadata(*metadata)
|
178 |
-
|
179 |
-
|
180 |
-
def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource):
|
181 |
-
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource)
|
182 |
-
if keys_hash is not None:
|
183 |
-
self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource)
|
184 |
-
|
185 |
-
|
186 |
-
def match(self, file_path="", state_dict={}):
|
187 |
-
if isinstance(file_path, str) and os.path.isdir(file_path):
|
188 |
-
return False
|
189 |
-
if len(state_dict) == 0:
|
190 |
-
state_dict = load_state_dict(file_path)
|
191 |
-
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
192 |
-
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
193 |
-
return True
|
194 |
-
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
|
195 |
-
if keys_hash in self.keys_hash_dict:
|
196 |
-
return True
|
197 |
-
return False
|
198 |
-
|
199 |
-
|
200 |
-
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, infer=False, **kwargs):
|
201 |
-
if len(state_dict) == 0:
|
202 |
-
state_dict = load_state_dict(file_path)
|
203 |
-
|
204 |
-
# Load models with strict matching
|
205 |
-
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
206 |
-
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
207 |
-
model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape]
|
208 |
-
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device, infer)
|
209 |
-
return loaded_model_names, loaded_models
|
210 |
-
|
211 |
-
# Load models without strict matching
|
212 |
-
# (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture)
|
213 |
-
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
|
214 |
-
if keys_hash in self.keys_hash_dict:
|
215 |
-
model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash]
|
216 |
-
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device, infer)
|
217 |
-
return loaded_model_names, loaded_models
|
218 |
-
|
219 |
-
return loaded_model_names, loaded_models
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile):
|
224 |
-
def __init__(self, model_loader_configs=[]):
|
225 |
-
super().__init__(model_loader_configs)
|
226 |
-
|
227 |
-
|
228 |
-
def match(self, file_path="", state_dict={}):
|
229 |
-
if isinstance(file_path, str) and os.path.isdir(file_path):
|
230 |
-
return False
|
231 |
-
if len(state_dict) == 0:
|
232 |
-
state_dict = load_state_dict(file_path)
|
233 |
-
splited_state_dict = split_state_dict_with_prefix(state_dict)
|
234 |
-
for sub_state_dict in splited_state_dict:
|
235 |
-
if super().match(file_path, sub_state_dict):
|
236 |
-
return True
|
237 |
-
return False
|
238 |
-
|
239 |
-
|
240 |
-
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
241 |
-
# Split the state_dict and load from each component
|
242 |
-
splited_state_dict = split_state_dict_with_prefix(state_dict)
|
243 |
-
valid_state_dict = {}
|
244 |
-
for sub_state_dict in splited_state_dict:
|
245 |
-
if super().match(file_path, sub_state_dict):
|
246 |
-
valid_state_dict.update(sub_state_dict)
|
247 |
-
if super().match(file_path, valid_state_dict):
|
248 |
-
loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype)
|
249 |
-
else:
|
250 |
-
loaded_model_names, loaded_models = [], []
|
251 |
-
for sub_state_dict in splited_state_dict:
|
252 |
-
if super().match(file_path, sub_state_dict):
|
253 |
-
loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype)
|
254 |
-
loaded_model_names += loaded_model_names_
|
255 |
-
loaded_models += loaded_models_
|
256 |
-
return loaded_model_names, loaded_models
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
class ModelDetectorFromHuggingfaceFolder:
|
261 |
-
def __init__(self, model_loader_configs=[]):
|
262 |
-
self.architecture_dict = {}
|
263 |
-
for metadata in model_loader_configs:
|
264 |
-
self.add_model_metadata(*metadata)
|
265 |
-
|
266 |
-
|
267 |
-
def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture):
|
268 |
-
self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture)
|
269 |
-
|
270 |
-
|
271 |
-
def match(self, file_path="", state_dict={}):
|
272 |
-
if not isinstance(file_path, str) or os.path.isfile(file_path):
|
273 |
-
return False
|
274 |
-
file_list = os.listdir(file_path)
|
275 |
-
if "config.json" not in file_list:
|
276 |
-
return False
|
277 |
-
with open(os.path.join(file_path, "config.json"), "r") as f:
|
278 |
-
config = json.load(f)
|
279 |
-
if "architectures" not in config and "_class_name" not in config:
|
280 |
-
return False
|
281 |
-
return True
|
282 |
-
|
283 |
-
|
284 |
-
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
285 |
-
with open(os.path.join(file_path, "config.json"), "r") as f:
|
286 |
-
config = json.load(f)
|
287 |
-
loaded_model_names, loaded_models = [], []
|
288 |
-
architectures = config["architectures"] if "architectures" in config else [config["_class_name"]]
|
289 |
-
for architecture in architectures:
|
290 |
-
huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture]
|
291 |
-
if redirected_architecture is not None:
|
292 |
-
architecture = redirected_architecture
|
293 |
-
model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture)
|
294 |
-
loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device)
|
295 |
-
loaded_model_names += loaded_model_names_
|
296 |
-
loaded_models += loaded_models_
|
297 |
-
return loaded_model_names, loaded_models
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
class ModelDetectorFromPatchedSingleFile:
|
302 |
-
def __init__(self, model_loader_configs=[]):
|
303 |
-
self.keys_hash_with_shape_dict = {}
|
304 |
-
for metadata in model_loader_configs:
|
305 |
-
self.add_model_metadata(*metadata)
|
306 |
-
|
307 |
-
|
308 |
-
def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs):
|
309 |
-
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs)
|
310 |
-
|
311 |
-
|
312 |
-
def match(self, file_path="", state_dict={}):
|
313 |
-
if not isinstance(file_path, str) or os.path.isdir(file_path):
|
314 |
-
return False
|
315 |
-
if len(state_dict) == 0:
|
316 |
-
state_dict = load_state_dict(file_path)
|
317 |
-
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
318 |
-
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
319 |
-
return True
|
320 |
-
return False
|
321 |
-
|
322 |
-
|
323 |
-
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs):
|
324 |
-
if len(state_dict) == 0:
|
325 |
-
state_dict = load_state_dict(file_path)
|
326 |
-
|
327 |
-
# Load models with strict matching
|
328 |
-
loaded_model_names, loaded_models = [], []
|
329 |
-
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
330 |
-
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
331 |
-
model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape]
|
332 |
-
loaded_model_names_, loaded_models_ = load_patch_model_from_single_file(
|
333 |
-
state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device)
|
334 |
-
loaded_model_names += loaded_model_names_
|
335 |
-
loaded_models += loaded_models_
|
336 |
-
return loaded_model_names, loaded_models
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
class ModelManager:
|
341 |
-
def __init__(
|
342 |
-
self,
|
343 |
-
torch_dtype=torch.float16,
|
344 |
-
device="cuda",
|
345 |
-
model_id_list: List = [],
|
346 |
-
downloading_priority: List = ["ModelScope", "HuggingFace"],
|
347 |
-
file_path_list: List[str] = [],
|
348 |
-
infer: bool = False
|
349 |
-
):
|
350 |
-
self.torch_dtype = torch_dtype
|
351 |
-
self.device = device
|
352 |
-
self.model = []
|
353 |
-
self.model_path = []
|
354 |
-
self.model_name = []
|
355 |
-
self.infer = infer
|
356 |
-
downloaded_files = []
|
357 |
-
self.model_detector = [
|
358 |
-
ModelDetectorFromSingleFile(model_loader_configs),
|
359 |
-
ModelDetectorFromSplitedSingleFile(model_loader_configs),
|
360 |
-
ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs),
|
361 |
-
]
|
362 |
-
self.load_models(downloaded_files + file_path_list)
|
363 |
-
|
364 |
-
def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0):
|
365 |
-
if isinstance(file_path, list):
|
366 |
-
for file_path_ in file_path:
|
367 |
-
self.load_lora(file_path_, state_dict=state_dict, lora_alpha=lora_alpha)
|
368 |
-
else:
|
369 |
-
print(f"Loading LoRA models from file: {file_path}")
|
370 |
-
is_loaded = False
|
371 |
-
if len(state_dict) == 0:
|
372 |
-
state_dict = load_state_dict(file_path)
|
373 |
-
for model_name, model, model_path in zip(self.model_name, self.model, self.model_path):
|
374 |
-
lora = GeneralLoRAFromPeft()
|
375 |
-
match_results = lora.match(model, state_dict)
|
376 |
-
if match_results is not None:
|
377 |
-
print(f" Adding LoRA to {model_name} ({model_path}).")
|
378 |
-
lora_prefix, model_resource = match_results
|
379 |
-
lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource)
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None):
|
384 |
-
print(f"Loading models from file: {file_path}")
|
385 |
-
if len(state_dict) == 0:
|
386 |
-
state_dict = load_state_dict(file_path)
|
387 |
-
model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device, self.infer)
|
388 |
-
for model_name, model in zip(model_names, models):
|
389 |
-
self.model.append(model)
|
390 |
-
self.model_path.append(file_path)
|
391 |
-
self.model_name.append(model_name)
|
392 |
-
print(f" The following models are loaded: {model_names}.")
|
393 |
-
|
394 |
-
|
395 |
-
def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]):
|
396 |
-
print(f"Loading models from folder: {file_path}")
|
397 |
-
model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device)
|
398 |
-
for model_name, model in zip(model_names, models):
|
399 |
-
self.model.append(model)
|
400 |
-
self.model_path.append(file_path)
|
401 |
-
self.model_name.append(model_name)
|
402 |
-
print(f" The following models are loaded: {model_names}.")
|
403 |
-
|
404 |
-
|
405 |
-
def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}):
|
406 |
-
print(f"Loading patch models from file: {file_path}")
|
407 |
-
model_names, models = load_patch_model_from_single_file(
|
408 |
-
state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device)
|
409 |
-
for model_name, model in zip(model_names, models):
|
410 |
-
self.model.append(model)
|
411 |
-
self.model_path.append(file_path)
|
412 |
-
self.model_name.append(model_name)
|
413 |
-
print(f" The following patched models are loaded: {model_names}.")
|
414 |
-
|
415 |
-
def load_model(self, file_path, model_names=None, device=None, torch_dtype=None):
|
416 |
-
print(f"Loading models from: {file_path}")
|
417 |
-
if device is None: device = self.device
|
418 |
-
if torch_dtype is None: torch_dtype = self.torch_dtype
|
419 |
-
if isinstance(file_path, list):
|
420 |
-
state_dict = {}
|
421 |
-
for path in file_path:
|
422 |
-
state_dict.update(load_state_dict(path))
|
423 |
-
elif os.path.isfile(file_path):
|
424 |
-
state_dict = load_state_dict(file_path)
|
425 |
-
else:
|
426 |
-
state_dict = None
|
427 |
-
for model_detector in self.model_detector:
|
428 |
-
if model_detector.match(file_path, state_dict):
|
429 |
-
model_names, models = model_detector.load(
|
430 |
-
file_path, state_dict,
|
431 |
-
device=device, torch_dtype=torch_dtype,
|
432 |
-
allowed_model_names=model_names, model_manager=self, infer=self.infer
|
433 |
-
)
|
434 |
-
for model_name, model in zip(model_names, models):
|
435 |
-
self.model.append(model)
|
436 |
-
self.model_path.append(file_path)
|
437 |
-
self.model_name.append(model_name)
|
438 |
-
print(f" The following models are loaded: {model_names}.")
|
439 |
-
break
|
440 |
-
else:
|
441 |
-
print(f" We cannot detect the model type. No models are loaded.")
|
442 |
-
|
443 |
-
|
444 |
-
def load_models(self, file_path_list, model_names=None, device=None, torch_dtype=None):
|
445 |
-
for file_path in file_path_list:
|
446 |
-
self.load_model(file_path, model_names, device=device, torch_dtype=torch_dtype)
|
447 |
-
|
448 |
-
|
449 |
-
def fetch_model(self, model_name, file_path=None, require_model_path=False):
|
450 |
-
fetched_models = []
|
451 |
-
fetched_model_paths = []
|
452 |
-
for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name):
|
453 |
-
if file_path is not None and file_path != model_path:
|
454 |
-
continue
|
455 |
-
if model_name == model_name_:
|
456 |
-
fetched_models.append(model)
|
457 |
-
fetched_model_paths.append(model_path)
|
458 |
-
if len(fetched_models) == 0:
|
459 |
-
print(f"No {model_name} models available.")
|
460 |
-
return None
|
461 |
-
if len(fetched_models) == 1:
|
462 |
-
print(f"Using {model_name} from {fetched_model_paths[0]}.")
|
463 |
-
else:
|
464 |
-
print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.")
|
465 |
-
if require_model_path:
|
466 |
-
return fetched_models[0], fetched_model_paths[0]
|
467 |
-
else:
|
468 |
-
return fetched_models[0]
|
469 |
-
|
470 |
-
|
471 |
-
def to(self, device):
|
472 |
-
for model in self.model:
|
473 |
-
model.to(device)
|
474 |
-
|
|
|
1 |
+
import os, torch, json, importlib
|
2 |
+
from typing import List
|
3 |
+
import torch.nn as nn
|
4 |
+
from ..configs.model_config import model_loader_configs
|
5 |
+
from ..utils.io_utils import load_state_dict, init_weights_on_device, hash_state_dict_keys, split_state_dict_with_prefix, smart_load_weights
|
6 |
+
|
7 |
+
class GeneralLoRAFromPeft:
|
8 |
+
|
9 |
+
def get_name_dict(self, lora_state_dict):
|
10 |
+
lora_name_dict = {}
|
11 |
+
for key in lora_state_dict:
|
12 |
+
if ".lora_B." not in key:
|
13 |
+
continue
|
14 |
+
keys = key.split(".")
|
15 |
+
if len(keys) > keys.index("lora_B") + 2:
|
16 |
+
keys.pop(keys.index("lora_B") + 1)
|
17 |
+
keys.pop(keys.index("lora_B"))
|
18 |
+
if keys[0] == "diffusion_model":
|
19 |
+
keys.pop(0)
|
20 |
+
target_name = ".".join(keys)
|
21 |
+
lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A."))
|
22 |
+
return lora_name_dict
|
23 |
+
|
24 |
+
|
25 |
+
def match(self, model: torch.nn.Module, state_dict_lora):
|
26 |
+
lora_name_dict = self.get_name_dict(state_dict_lora)
|
27 |
+
model_name_dict = {name: None for name, _ in model.named_parameters()}
|
28 |
+
matched_num = sum([i in model_name_dict for i in lora_name_dict])
|
29 |
+
if matched_num == len(lora_name_dict):
|
30 |
+
return "", ""
|
31 |
+
else:
|
32 |
+
return None
|
33 |
+
|
34 |
+
|
35 |
+
def fetch_device_and_dtype(self, state_dict):
|
36 |
+
device, dtype = None, None
|
37 |
+
for name, param in state_dict.items():
|
38 |
+
device, dtype = param.device, param.dtype
|
39 |
+
break
|
40 |
+
computation_device = device
|
41 |
+
computation_dtype = dtype
|
42 |
+
if computation_device == torch.device("cpu"):
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
computation_device = torch.device("cuda")
|
45 |
+
if computation_dtype == torch.float8_e4m3fn:
|
46 |
+
computation_dtype = torch.float32
|
47 |
+
return device, dtype, computation_device, computation_dtype
|
48 |
+
|
49 |
+
|
50 |
+
def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""):
|
51 |
+
state_dict_model = model.state_dict()
|
52 |
+
device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model)
|
53 |
+
lora_name_dict = self.get_name_dict(state_dict_lora)
|
54 |
+
for name in lora_name_dict:
|
55 |
+
weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype)
|
56 |
+
weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype)
|
57 |
+
if len(weight_up.shape) == 4:
|
58 |
+
weight_up = weight_up.squeeze(3).squeeze(2)
|
59 |
+
weight_down = weight_down.squeeze(3).squeeze(2)
|
60 |
+
weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
61 |
+
else:
|
62 |
+
weight_lora = alpha * torch.mm(weight_up, weight_down)
|
63 |
+
weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype)
|
64 |
+
weight_patched = weight_model + weight_lora
|
65 |
+
state_dict_model[name] = weight_patched.to(device=device, dtype=dtype)
|
66 |
+
print(f" {len(lora_name_dict)} tensors are updated.")
|
67 |
+
model.load_state_dict(state_dict_model)
|
68 |
+
|
69 |
+
|
70 |
+
def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device, infer):
|
71 |
+
loaded_model_names, loaded_models = [], []
|
72 |
+
for model_name, model_class in zip(model_names, model_classes):
|
73 |
+
print(f" model_name: {model_name} model_class: {model_class.__name__}")
|
74 |
+
state_dict_converter = model_class.state_dict_converter()
|
75 |
+
if model_resource == "civitai":
|
76 |
+
state_dict_results = state_dict_converter.from_civitai(state_dict)
|
77 |
+
elif model_resource == "diffusers":
|
78 |
+
state_dict_results = state_dict_converter.from_diffusers(state_dict)
|
79 |
+
if isinstance(state_dict_results, tuple):
|
80 |
+
model_state_dict, extra_kwargs = state_dict_results
|
81 |
+
print(f" This model is initialized with extra kwargs: {extra_kwargs}")
|
82 |
+
else:
|
83 |
+
model_state_dict, extra_kwargs = state_dict_results, {}
|
84 |
+
torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype
|
85 |
+
with init_weights_on_device():
|
86 |
+
model = model_class(**extra_kwargs)
|
87 |
+
if hasattr(model, "eval"):
|
88 |
+
model = model.eval()
|
89 |
+
if not infer: # 训练才初始化
|
90 |
+
model = model.to_empty(device=torch.device("cuda"))
|
91 |
+
for name, param in model.named_parameters():
|
92 |
+
if param.dim() > 1: # 通常只对权重矩阵而不是偏置做初始化
|
93 |
+
nn.init.xavier_uniform_(param, gain=0.05)
|
94 |
+
else:
|
95 |
+
nn.init.zeros_(param)
|
96 |
+
else:
|
97 |
+
model = model.to_empty(device=device)
|
98 |
+
model, _, _ = smart_load_weights(model, model_state_dict)
|
99 |
+
# model.load_state_dict(model_state_dict, assign=True, strict=False)
|
100 |
+
model = model.to(dtype=torch_dtype, device=device)
|
101 |
+
loaded_model_names.append(model_name)
|
102 |
+
loaded_models.append(model)
|
103 |
+
return loaded_model_names, loaded_models
|
104 |
+
|
105 |
+
|
106 |
+
def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device):
|
107 |
+
loaded_model_names, loaded_models = [], []
|
108 |
+
for model_name, model_class in zip(model_names, model_classes):
|
109 |
+
if torch_dtype in [torch.float32, torch.float16, torch.bfloat16]:
|
110 |
+
model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval()
|
111 |
+
else:
|
112 |
+
model = model_class.from_pretrained(file_path).eval().to(dtype=torch_dtype)
|
113 |
+
if torch_dtype == torch.float16 and hasattr(model, "half"):
|
114 |
+
model = model.half()
|
115 |
+
try:
|
116 |
+
model = model.to(device=device)
|
117 |
+
except:
|
118 |
+
pass
|
119 |
+
loaded_model_names.append(model_name)
|
120 |
+
loaded_models.append(model)
|
121 |
+
return loaded_model_names, loaded_models
|
122 |
+
|
123 |
+
|
124 |
+
def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device):
|
125 |
+
print(f" model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}")
|
126 |
+
base_state_dict = base_model.state_dict()
|
127 |
+
base_model.to("cpu")
|
128 |
+
del base_model
|
129 |
+
model = model_class(**extra_kwargs)
|
130 |
+
model.load_state_dict(base_state_dict, strict=False)
|
131 |
+
model.load_state_dict(state_dict, strict=False)
|
132 |
+
model.to(dtype=torch_dtype, device=device)
|
133 |
+
return model
|
134 |
+
|
135 |
+
|
136 |
+
def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device):
|
137 |
+
loaded_model_names, loaded_models = [], []
|
138 |
+
for model_name, model_class in zip(model_names, model_classes):
|
139 |
+
while True:
|
140 |
+
for model_id in range(len(model_manager.model)):
|
141 |
+
base_model_name = model_manager.model_name[model_id]
|
142 |
+
if base_model_name == model_name:
|
143 |
+
base_model_path = model_manager.model_path[model_id]
|
144 |
+
base_model = model_manager.model[model_id]
|
145 |
+
print(f" Adding patch model to {base_model_name} ({base_model_path})")
|
146 |
+
patched_model = load_single_patch_model_from_single_file(
|
147 |
+
state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device)
|
148 |
+
loaded_model_names.append(base_model_name)
|
149 |
+
loaded_models.append(patched_model)
|
150 |
+
model_manager.model.pop(model_id)
|
151 |
+
model_manager.model_path.pop(model_id)
|
152 |
+
model_manager.model_name.pop(model_id)
|
153 |
+
break
|
154 |
+
else:
|
155 |
+
break
|
156 |
+
return loaded_model_names, loaded_models
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
class ModelDetectorTemplate:
|
161 |
+
def __init__(self):
|
162 |
+
pass
|
163 |
+
|
164 |
+
def match(self, file_path="", state_dict={}):
|
165 |
+
return False
|
166 |
+
|
167 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
168 |
+
return [], []
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
class ModelDetectorFromSingleFile:
|
173 |
+
def __init__(self, model_loader_configs=[]):
|
174 |
+
self.keys_hash_with_shape_dict = {}
|
175 |
+
self.keys_hash_dict = {}
|
176 |
+
for metadata in model_loader_configs:
|
177 |
+
self.add_model_metadata(*metadata)
|
178 |
+
|
179 |
+
|
180 |
+
def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource):
|
181 |
+
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource)
|
182 |
+
if keys_hash is not None:
|
183 |
+
self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource)
|
184 |
+
|
185 |
+
|
186 |
+
def match(self, file_path="", state_dict={}):
|
187 |
+
if isinstance(file_path, str) and os.path.isdir(file_path):
|
188 |
+
return False
|
189 |
+
if len(state_dict) == 0:
|
190 |
+
state_dict = load_state_dict(file_path)
|
191 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
192 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
193 |
+
return True
|
194 |
+
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
|
195 |
+
if keys_hash in self.keys_hash_dict:
|
196 |
+
return True
|
197 |
+
return False
|
198 |
+
|
199 |
+
|
200 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, infer=False, **kwargs):
|
201 |
+
if len(state_dict) == 0:
|
202 |
+
state_dict = load_state_dict(file_path)
|
203 |
+
|
204 |
+
# Load models with strict matching
|
205 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
206 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
207 |
+
model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape]
|
208 |
+
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device, infer)
|
209 |
+
return loaded_model_names, loaded_models
|
210 |
+
|
211 |
+
# Load models without strict matching
|
212 |
+
# (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture)
|
213 |
+
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
|
214 |
+
if keys_hash in self.keys_hash_dict:
|
215 |
+
model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash]
|
216 |
+
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device, infer)
|
217 |
+
return loaded_model_names, loaded_models
|
218 |
+
|
219 |
+
return loaded_model_names, loaded_models
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile):
|
224 |
+
def __init__(self, model_loader_configs=[]):
|
225 |
+
super().__init__(model_loader_configs)
|
226 |
+
|
227 |
+
|
228 |
+
def match(self, file_path="", state_dict={}):
|
229 |
+
if isinstance(file_path, str) and os.path.isdir(file_path):
|
230 |
+
return False
|
231 |
+
if len(state_dict) == 0:
|
232 |
+
state_dict = load_state_dict(file_path)
|
233 |
+
splited_state_dict = split_state_dict_with_prefix(state_dict)
|
234 |
+
for sub_state_dict in splited_state_dict:
|
235 |
+
if super().match(file_path, sub_state_dict):
|
236 |
+
return True
|
237 |
+
return False
|
238 |
+
|
239 |
+
|
240 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
241 |
+
# Split the state_dict and load from each component
|
242 |
+
splited_state_dict = split_state_dict_with_prefix(state_dict)
|
243 |
+
valid_state_dict = {}
|
244 |
+
for sub_state_dict in splited_state_dict:
|
245 |
+
if super().match(file_path, sub_state_dict):
|
246 |
+
valid_state_dict.update(sub_state_dict)
|
247 |
+
if super().match(file_path, valid_state_dict):
|
248 |
+
loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype)
|
249 |
+
else:
|
250 |
+
loaded_model_names, loaded_models = [], []
|
251 |
+
for sub_state_dict in splited_state_dict:
|
252 |
+
if super().match(file_path, sub_state_dict):
|
253 |
+
loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype)
|
254 |
+
loaded_model_names += loaded_model_names_
|
255 |
+
loaded_models += loaded_models_
|
256 |
+
return loaded_model_names, loaded_models
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
class ModelDetectorFromHuggingfaceFolder:
|
261 |
+
def __init__(self, model_loader_configs=[]):
|
262 |
+
self.architecture_dict = {}
|
263 |
+
for metadata in model_loader_configs:
|
264 |
+
self.add_model_metadata(*metadata)
|
265 |
+
|
266 |
+
|
267 |
+
def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture):
|
268 |
+
self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture)
|
269 |
+
|
270 |
+
|
271 |
+
def match(self, file_path="", state_dict={}):
|
272 |
+
if not isinstance(file_path, str) or os.path.isfile(file_path):
|
273 |
+
return False
|
274 |
+
file_list = os.listdir(file_path)
|
275 |
+
if "config.json" not in file_list:
|
276 |
+
return False
|
277 |
+
with open(os.path.join(file_path, "config.json"), "r") as f:
|
278 |
+
config = json.load(f)
|
279 |
+
if "architectures" not in config and "_class_name" not in config:
|
280 |
+
return False
|
281 |
+
return True
|
282 |
+
|
283 |
+
|
284 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
|
285 |
+
with open(os.path.join(file_path, "config.json"), "r") as f:
|
286 |
+
config = json.load(f)
|
287 |
+
loaded_model_names, loaded_models = [], []
|
288 |
+
architectures = config["architectures"] if "architectures" in config else [config["_class_name"]]
|
289 |
+
for architecture in architectures:
|
290 |
+
huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture]
|
291 |
+
if redirected_architecture is not None:
|
292 |
+
architecture = redirected_architecture
|
293 |
+
model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture)
|
294 |
+
loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device)
|
295 |
+
loaded_model_names += loaded_model_names_
|
296 |
+
loaded_models += loaded_models_
|
297 |
+
return loaded_model_names, loaded_models
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
class ModelDetectorFromPatchedSingleFile:
|
302 |
+
def __init__(self, model_loader_configs=[]):
|
303 |
+
self.keys_hash_with_shape_dict = {}
|
304 |
+
for metadata in model_loader_configs:
|
305 |
+
self.add_model_metadata(*metadata)
|
306 |
+
|
307 |
+
|
308 |
+
def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs):
|
309 |
+
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs)
|
310 |
+
|
311 |
+
|
312 |
+
def match(self, file_path="", state_dict={}):
|
313 |
+
if not isinstance(file_path, str) or os.path.isdir(file_path):
|
314 |
+
return False
|
315 |
+
if len(state_dict) == 0:
|
316 |
+
state_dict = load_state_dict(file_path)
|
317 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
318 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
319 |
+
return True
|
320 |
+
return False
|
321 |
+
|
322 |
+
|
323 |
+
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs):
|
324 |
+
if len(state_dict) == 0:
|
325 |
+
state_dict = load_state_dict(file_path)
|
326 |
+
|
327 |
+
# Load models with strict matching
|
328 |
+
loaded_model_names, loaded_models = [], []
|
329 |
+
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
|
330 |
+
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
|
331 |
+
model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape]
|
332 |
+
loaded_model_names_, loaded_models_ = load_patch_model_from_single_file(
|
333 |
+
state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device)
|
334 |
+
loaded_model_names += loaded_model_names_
|
335 |
+
loaded_models += loaded_models_
|
336 |
+
return loaded_model_names, loaded_models
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
class ModelManager:
|
341 |
+
def __init__(
|
342 |
+
self,
|
343 |
+
torch_dtype=torch.float16,
|
344 |
+
device="cuda",
|
345 |
+
model_id_list: List = [],
|
346 |
+
downloading_priority: List = ["ModelScope", "HuggingFace"],
|
347 |
+
file_path_list: List[str] = [],
|
348 |
+
infer: bool = False
|
349 |
+
):
|
350 |
+
self.torch_dtype = torch_dtype
|
351 |
+
self.device = device
|
352 |
+
self.model = []
|
353 |
+
self.model_path = []
|
354 |
+
self.model_name = []
|
355 |
+
self.infer = infer
|
356 |
+
downloaded_files = []
|
357 |
+
self.model_detector = [
|
358 |
+
ModelDetectorFromSingleFile(model_loader_configs),
|
359 |
+
ModelDetectorFromSplitedSingleFile(model_loader_configs),
|
360 |
+
ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs),
|
361 |
+
]
|
362 |
+
self.load_models(downloaded_files + file_path_list)
|
363 |
+
|
364 |
+
def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0):
|
365 |
+
if isinstance(file_path, list):
|
366 |
+
for file_path_ in file_path:
|
367 |
+
self.load_lora(file_path_, state_dict=state_dict, lora_alpha=lora_alpha)
|
368 |
+
else:
|
369 |
+
print(f"Loading LoRA models from file: {file_path}")
|
370 |
+
is_loaded = False
|
371 |
+
if len(state_dict) == 0:
|
372 |
+
state_dict = load_state_dict(file_path)
|
373 |
+
for model_name, model, model_path in zip(self.model_name, self.model, self.model_path):
|
374 |
+
lora = GeneralLoRAFromPeft()
|
375 |
+
match_results = lora.match(model, state_dict)
|
376 |
+
if match_results is not None:
|
377 |
+
print(f" Adding LoRA to {model_name} ({model_path}).")
|
378 |
+
lora_prefix, model_resource = match_results
|
379 |
+
lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource)
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None):
|
384 |
+
print(f"Loading models from file: {file_path}")
|
385 |
+
if len(state_dict) == 0:
|
386 |
+
state_dict = load_state_dict(file_path)
|
387 |
+
model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device, self.infer)
|
388 |
+
for model_name, model in zip(model_names, models):
|
389 |
+
self.model.append(model)
|
390 |
+
self.model_path.append(file_path)
|
391 |
+
self.model_name.append(model_name)
|
392 |
+
print(f" The following models are loaded: {model_names}.")
|
393 |
+
|
394 |
+
|
395 |
+
def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]):
|
396 |
+
print(f"Loading models from folder: {file_path}")
|
397 |
+
model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device)
|
398 |
+
for model_name, model in zip(model_names, models):
|
399 |
+
self.model.append(model)
|
400 |
+
self.model_path.append(file_path)
|
401 |
+
self.model_name.append(model_name)
|
402 |
+
print(f" The following models are loaded: {model_names}.")
|
403 |
+
|
404 |
+
|
405 |
+
def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}):
|
406 |
+
print(f"Loading patch models from file: {file_path}")
|
407 |
+
model_names, models = load_patch_model_from_single_file(
|
408 |
+
state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device)
|
409 |
+
for model_name, model in zip(model_names, models):
|
410 |
+
self.model.append(model)
|
411 |
+
self.model_path.append(file_path)
|
412 |
+
self.model_name.append(model_name)
|
413 |
+
print(f" The following patched models are loaded: {model_names}.")
|
414 |
+
|
415 |
+
def load_model(self, file_path, model_names=None, device=None, torch_dtype=None):
|
416 |
+
print(f"Loading models from: {file_path}")
|
417 |
+
if device is None: device = self.device
|
418 |
+
if torch_dtype is None: torch_dtype = self.torch_dtype
|
419 |
+
if isinstance(file_path, list):
|
420 |
+
state_dict = {}
|
421 |
+
for path in file_path:
|
422 |
+
state_dict.update(load_state_dict(path))
|
423 |
+
elif os.path.isfile(file_path):
|
424 |
+
state_dict = load_state_dict(file_path)
|
425 |
+
else:
|
426 |
+
state_dict = None
|
427 |
+
for model_detector in self.model_detector:
|
428 |
+
if model_detector.match(file_path, state_dict):
|
429 |
+
model_names, models = model_detector.load(
|
430 |
+
file_path, state_dict,
|
431 |
+
device=device, torch_dtype=torch_dtype,
|
432 |
+
allowed_model_names=model_names, model_manager=self, infer=self.infer
|
433 |
+
)
|
434 |
+
for model_name, model in zip(model_names, models):
|
435 |
+
self.model.append(model)
|
436 |
+
self.model_path.append(file_path)
|
437 |
+
self.model_name.append(model_name)
|
438 |
+
print(f" The following models are loaded: {model_names}.")
|
439 |
+
break
|
440 |
+
else:
|
441 |
+
print(f" We cannot detect the model type. No models are loaded.")
|
442 |
+
|
443 |
+
|
444 |
+
def load_models(self, file_path_list, model_names=None, device=None, torch_dtype=None):
|
445 |
+
for file_path in file_path_list:
|
446 |
+
self.load_model(file_path, model_names, device=device, torch_dtype=torch_dtype)
|
447 |
+
|
448 |
+
|
449 |
+
def fetch_model(self, model_name, file_path=None, require_model_path=False):
|
450 |
+
fetched_models = []
|
451 |
+
fetched_model_paths = []
|
452 |
+
for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name):
|
453 |
+
if file_path is not None and file_path != model_path:
|
454 |
+
continue
|
455 |
+
if model_name == model_name_:
|
456 |
+
fetched_models.append(model)
|
457 |
+
fetched_model_paths.append(model_path)
|
458 |
+
if len(fetched_models) == 0:
|
459 |
+
print(f"No {model_name} models available.")
|
460 |
+
return None
|
461 |
+
if len(fetched_models) == 1:
|
462 |
+
print(f"Using {model_name} from {fetched_model_paths[0]}.")
|
463 |
+
else:
|
464 |
+
print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.")
|
465 |
+
if require_model_path:
|
466 |
+
return fetched_models[0], fetched_model_paths[0]
|
467 |
+
else:
|
468 |
+
return fetched_models[0]
|
469 |
+
|
470 |
+
|
471 |
+
def to(self, device):
|
472 |
+
for model in self.model:
|
473 |
+
model.to(device)
|
474 |
+
|