Spaces:
Running
on
Zero
Running
on
Zero
Update OmniAvatar/wan_video.py
Browse files- OmniAvatar/wan_video.py +344 -339
OmniAvatar/wan_video.py
CHANGED
@@ -1,340 +1,345 @@
|
|
1 |
-
import types
|
2 |
-
from .models.model_manager import ModelManager
|
3 |
-
from .models.wan_video_dit import WanModel
|
4 |
-
from .models.wan_video_text_encoder import WanTextEncoder
|
5 |
-
from .models.wan_video_vae import WanVideoVAE
|
6 |
-
from .schedulers.flow_match import FlowMatchScheduler
|
7 |
-
|
8 |
-
from .
|
9 |
-
import
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
from
|
14 |
-
from
|
15 |
-
from
|
16 |
-
from .
|
17 |
-
from .models.
|
18 |
-
from .models.
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
self.
|
28 |
-
|
29 |
-
self.
|
30 |
-
|
31 |
-
self.
|
32 |
-
self.
|
33 |
-
self.
|
34 |
-
self.
|
35 |
-
self.
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
torch.nn.
|
94 |
-
torch.nn.
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
return
|
161 |
-
|
162 |
-
|
163 |
-
def
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
return
|
196 |
-
|
197 |
-
|
198 |
-
def
|
199 |
-
|
200 |
-
return
|
201 |
-
|
202 |
-
|
203 |
-
def
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
def
|
209 |
-
self
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
self.
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
noise_pred =
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
self.
|
299 |
-
self.
|
300 |
-
|
301 |
-
self.
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
340 |
return hidden_states
|
|
|
1 |
+
import types
|
2 |
+
from .models.model_manager import ModelManager
|
3 |
+
from .models.wan_video_dit import WanModel
|
4 |
+
from .models.wan_video_text_encoder import WanTextEncoder
|
5 |
+
from .models.wan_video_vae import WanVideoVAE
|
6 |
+
from .schedulers.flow_match import FlowMatchScheduler
|
7 |
+
|
8 |
+
from .base import BasePipeline
|
9 |
+
from .prompters import WanPrompter
|
10 |
+
import torch, os
|
11 |
+
from einops import rearrange
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
from tqdm import tqdm
|
15 |
+
from typing import Optional
|
16 |
+
from .vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear
|
17 |
+
from .models.wan_video_text_encoder import T5RelativeEmbedding, T5LayerNorm
|
18 |
+
from .models.wan_video_dit import RMSNorm
|
19 |
+
from .models.wan_video_vae import RMS_norm, CausalConv3d, Upsample
|
20 |
+
|
21 |
+
from diffusers import UniPCMultistepScheduler
|
22 |
+
|
23 |
+
class WanVideoPipeline(BasePipeline):
|
24 |
+
|
25 |
+
def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None):
|
26 |
+
super().__init__(device=device, torch_dtype=torch_dtype)
|
27 |
+
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
|
28 |
+
|
29 |
+
self.scheduler = UniPCMultistepScheduler.from_config(self.scheduler.config, flow_shift=8.0)
|
30 |
+
|
31 |
+
self.prompter = WanPrompter(tokenizer_path=tokenizer_path)
|
32 |
+
self.text_encoder: WanTextEncoder = None
|
33 |
+
self.image_encoder = None
|
34 |
+
self.dit: WanModel = None
|
35 |
+
self.vae: WanVideoVAE = None
|
36 |
+
self.model_names = ['text_encoder', 'dit', 'vae', 'image_encoder']
|
37 |
+
self.height_division_factor = 16
|
38 |
+
self.width_division_factor = 16
|
39 |
+
self.use_unified_sequence_parallel = False
|
40 |
+
self.sp_size = 1
|
41 |
+
|
42 |
+
|
43 |
+
def enable_vram_management(self, num_persistent_param_in_dit=None):
|
44 |
+
dtype = next(iter(self.text_encoder.parameters())).dtype
|
45 |
+
enable_vram_management(
|
46 |
+
self.text_encoder,
|
47 |
+
module_map = {
|
48 |
+
torch.nn.Linear: AutoWrappedLinear,
|
49 |
+
torch.nn.Embedding: AutoWrappedModule,
|
50 |
+
T5RelativeEmbedding: AutoWrappedModule,
|
51 |
+
T5LayerNorm: AutoWrappedModule,
|
52 |
+
},
|
53 |
+
module_config = dict(
|
54 |
+
offload_dtype=dtype,
|
55 |
+
offload_device="cpu",
|
56 |
+
onload_dtype=dtype,
|
57 |
+
onload_device="cpu",
|
58 |
+
computation_dtype=self.torch_dtype,
|
59 |
+
computation_device=self.device,
|
60 |
+
),
|
61 |
+
)
|
62 |
+
dtype = next(iter(self.dit.parameters())).dtype
|
63 |
+
enable_vram_management(
|
64 |
+
self.dit,
|
65 |
+
module_map = {
|
66 |
+
torch.nn.Linear: AutoWrappedLinear,
|
67 |
+
torch.nn.Conv3d: AutoWrappedModule,
|
68 |
+
torch.nn.LayerNorm: AutoWrappedModule,
|
69 |
+
RMSNorm: AutoWrappedModule,
|
70 |
+
},
|
71 |
+
module_config = dict(
|
72 |
+
offload_dtype=dtype,
|
73 |
+
offload_device="cpu",
|
74 |
+
onload_dtype=dtype,
|
75 |
+
onload_device=self.device,
|
76 |
+
computation_dtype=self.torch_dtype,
|
77 |
+
computation_device=self.device,
|
78 |
+
),
|
79 |
+
max_num_param=num_persistent_param_in_dit,
|
80 |
+
overflow_module_config = dict(
|
81 |
+
offload_dtype=dtype,
|
82 |
+
offload_device="cpu",
|
83 |
+
onload_dtype=dtype,
|
84 |
+
onload_device="cpu",
|
85 |
+
computation_dtype=self.torch_dtype,
|
86 |
+
computation_device=self.device,
|
87 |
+
),
|
88 |
+
)
|
89 |
+
dtype = next(iter(self.vae.parameters())).dtype
|
90 |
+
enable_vram_management(
|
91 |
+
self.vae,
|
92 |
+
module_map = {
|
93 |
+
torch.nn.Linear: AutoWrappedLinear,
|
94 |
+
torch.nn.Conv2d: AutoWrappedModule,
|
95 |
+
RMS_norm: AutoWrappedModule,
|
96 |
+
CausalConv3d: AutoWrappedModule,
|
97 |
+
Upsample: AutoWrappedModule,
|
98 |
+
torch.nn.SiLU: AutoWrappedModule,
|
99 |
+
torch.nn.Dropout: AutoWrappedModule,
|
100 |
+
},
|
101 |
+
module_config = dict(
|
102 |
+
offload_dtype=dtype,
|
103 |
+
offload_device="cpu",
|
104 |
+
onload_dtype=dtype,
|
105 |
+
onload_device=self.device,
|
106 |
+
computation_dtype=self.torch_dtype,
|
107 |
+
computation_device=self.device,
|
108 |
+
),
|
109 |
+
)
|
110 |
+
if self.image_encoder is not None:
|
111 |
+
dtype = next(iter(self.image_encoder.parameters())).dtype
|
112 |
+
enable_vram_management(
|
113 |
+
self.image_encoder,
|
114 |
+
module_map = {
|
115 |
+
torch.nn.Linear: AutoWrappedLinear,
|
116 |
+
torch.nn.Conv2d: AutoWrappedModule,
|
117 |
+
torch.nn.LayerNorm: AutoWrappedModule,
|
118 |
+
},
|
119 |
+
module_config = dict(
|
120 |
+
offload_dtype=dtype,
|
121 |
+
offload_device="cpu",
|
122 |
+
onload_dtype=dtype,
|
123 |
+
onload_device="cpu",
|
124 |
+
computation_dtype=dtype,
|
125 |
+
computation_device=self.device,
|
126 |
+
),
|
127 |
+
)
|
128 |
+
self.enable_cpu_offload()
|
129 |
+
|
130 |
+
|
131 |
+
def fetch_models(self, model_manager: ModelManager):
|
132 |
+
text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True)
|
133 |
+
if text_encoder_model_and_path is not None:
|
134 |
+
self.text_encoder, tokenizer_path = text_encoder_model_and_path
|
135 |
+
self.prompter.fetch_models(self.text_encoder)
|
136 |
+
self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl"))
|
137 |
+
self.dit = model_manager.fetch_model("wan_video_dit")
|
138 |
+
self.vae = model_manager.fetch_model("wan_video_vae")
|
139 |
+
self.image_encoder = model_manager.fetch_model("wan_video_image_encoder")
|
140 |
+
|
141 |
+
|
142 |
+
@staticmethod
|
143 |
+
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, use_usp=False, infer=False):
|
144 |
+
if device is None: device = model_manager.device
|
145 |
+
if torch_dtype is None: torch_dtype = model_manager.torch_dtype
|
146 |
+
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype)
|
147 |
+
pipe.fetch_models(model_manager)
|
148 |
+
if use_usp:
|
149 |
+
from xfuser.core.distributed import get_sequence_parallel_world_size, get_sp_group
|
150 |
+
from OmniAvatar.distributed.xdit_context_parallel import usp_attn_forward
|
151 |
+
for block in pipe.dit.blocks:
|
152 |
+
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn)
|
153 |
+
pipe.sp_size = get_sequence_parallel_world_size()
|
154 |
+
pipe.use_unified_sequence_parallel = True
|
155 |
+
pipe.sp_group = get_sp_group()
|
156 |
+
return pipe
|
157 |
+
|
158 |
+
|
159 |
+
def denoising_model(self):
|
160 |
+
return self.dit
|
161 |
+
|
162 |
+
|
163 |
+
def encode_prompt(self, prompt, positive=True):
|
164 |
+
prompt_emb = self.prompter.encode_prompt(prompt, positive=positive, device=self.device)
|
165 |
+
return {"context": prompt_emb}
|
166 |
+
|
167 |
+
|
168 |
+
def encode_image(self, image, num_frames, height, width):
|
169 |
+
image = self.preprocess_image(image.resize((width, height))).to(self.device, dtype=self.torch_dtype)
|
170 |
+
clip_context = self.image_encoder.encode_image([image])
|
171 |
+
clip_context = clip_context.to(dtype=self.torch_dtype)
|
172 |
+
msk = torch.ones(1, num_frames, height//8, width//8, device=self.device, dtype=self.torch_dtype)
|
173 |
+
msk[:, 1:] = 0
|
174 |
+
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
|
175 |
+
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8)
|
176 |
+
msk = msk.transpose(1, 2)[0]
|
177 |
+
|
178 |
+
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device, dtype=self.torch_dtype)], dim=1)
|
179 |
+
y = self.vae.encode([vae_input.to(dtype=self.torch_dtype, device=self.device)], device=self.device)[0]
|
180 |
+
y = torch.concat([msk, y])
|
181 |
+
y = y.unsqueeze(0)
|
182 |
+
clip_context = clip_context.to(dtype=self.torch_dtype, device=self.device)
|
183 |
+
y = y.to(dtype=self.torch_dtype, device=self.device)
|
184 |
+
return {"clip_feature": clip_context, "y": y}
|
185 |
+
|
186 |
+
|
187 |
+
def tensor2video(self, frames):
|
188 |
+
frames = rearrange(frames, "C T H W -> T H W C")
|
189 |
+
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
|
190 |
+
frames = [Image.fromarray(frame) for frame in frames]
|
191 |
+
return frames
|
192 |
+
|
193 |
+
|
194 |
+
def prepare_extra_input(self, latents=None):
|
195 |
+
return {}
|
196 |
+
|
197 |
+
|
198 |
+
def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
|
199 |
+
latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
|
200 |
+
return latents
|
201 |
+
|
202 |
+
|
203 |
+
def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
|
204 |
+
frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
|
205 |
+
return frames
|
206 |
+
|
207 |
+
|
208 |
+
def prepare_unified_sequence_parallel(self):
|
209 |
+
return {"use_unified_sequence_parallel": self.use_unified_sequence_parallel}
|
210 |
+
|
211 |
+
|
212 |
+
@torch.no_grad()
|
213 |
+
def log_video(
|
214 |
+
self,
|
215 |
+
lat,
|
216 |
+
prompt,
|
217 |
+
fixed_frame=0, # lat frames
|
218 |
+
image_emb={},
|
219 |
+
audio_emb={},
|
220 |
+
negative_prompt="",
|
221 |
+
cfg_scale=5.0,
|
222 |
+
audio_cfg_scale=5.0,
|
223 |
+
num_inference_steps=50,
|
224 |
+
denoising_strength=1.0,
|
225 |
+
sigma_shift=5.0,
|
226 |
+
tiled=True,
|
227 |
+
tile_size=(30, 52),
|
228 |
+
tile_stride=(15, 26),
|
229 |
+
tea_cache_l1_thresh=None,
|
230 |
+
tea_cache_model_id="",
|
231 |
+
progress_bar_cmd=tqdm,
|
232 |
+
return_latent=False,
|
233 |
+
):
|
234 |
+
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
|
235 |
+
# Scheduler
|
236 |
+
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift)
|
237 |
+
|
238 |
+
lat = lat.to(dtype=self.torch_dtype)
|
239 |
+
latents = lat.clone()
|
240 |
+
latents = torch.randn_like(latents, dtype=self.torch_dtype)
|
241 |
+
|
242 |
+
# Encode prompts
|
243 |
+
self.load_models_to_device(["text_encoder"])
|
244 |
+
prompt_emb_posi = self.encode_prompt(prompt, positive=True)
|
245 |
+
if cfg_scale != 1.0:
|
246 |
+
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False)
|
247 |
+
|
248 |
+
# Extra input
|
249 |
+
extra_input = self.prepare_extra_input(latents)
|
250 |
+
|
251 |
+
# TeaCache
|
252 |
+
tea_cache_posi = {"tea_cache": None}
|
253 |
+
tea_cache_nega = {"tea_cache": None}
|
254 |
+
|
255 |
+
# Denoise
|
256 |
+
self.load_models_to_device(["dit"])
|
257 |
+
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
|
258 |
+
if fixed_frame > 0: # new
|
259 |
+
latents[:, :, :fixed_frame] = lat[:, :, :fixed_frame]
|
260 |
+
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device)
|
261 |
+
|
262 |
+
# Inference
|
263 |
+
noise_pred_posi = self.dit(latents, timestep=timestep, **prompt_emb_posi, **image_emb, **audio_emb, **tea_cache_posi, **extra_input)
|
264 |
+
print(f'noise_pred_posi:{noise_pred_posi.dtype}')
|
265 |
+
if cfg_scale != 1.0:
|
266 |
+
audio_emb_uc = {}
|
267 |
+
for key in audio_emb.keys():
|
268 |
+
audio_emb_uc[key] = torch.zeros_like(audio_emb[key], dtype=self.torch_dtype)
|
269 |
+
if audio_cfg_scale == cfg_scale:
|
270 |
+
noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_nega, **image_emb, **audio_emb_uc, **tea_cache_nega, **extra_input)
|
271 |
+
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
|
272 |
+
else:
|
273 |
+
tea_cache_nega_audio = {"tea_cache": None}
|
274 |
+
audio_noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_posi, **image_emb, **audio_emb_uc, **tea_cache_nega_audio, **extra_input)
|
275 |
+
text_noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_nega, **image_emb, **audio_emb_uc, **tea_cache_nega, **extra_input)
|
276 |
+
noise_pred = text_noise_pred_nega + cfg_scale * (audio_noise_pred_nega - text_noise_pred_nega) + audio_cfg_scale * (noise_pred_posi - audio_noise_pred_nega)
|
277 |
+
else:
|
278 |
+
noise_pred = noise_pred_posi
|
279 |
+
# Scheduler
|
280 |
+
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
|
281 |
+
|
282 |
+
if fixed_frame > 0: # new
|
283 |
+
latents[:, :, :fixed_frame] = lat[:, :, :fixed_frame]
|
284 |
+
# Decode
|
285 |
+
self.load_models_to_device(['vae'])
|
286 |
+
frames = self.decode_video(latents, **tiler_kwargs)
|
287 |
+
recons = self.decode_video(lat, **tiler_kwargs)
|
288 |
+
self.load_models_to_device([])
|
289 |
+
frames = (frames.permute(0, 2, 1, 3, 4).float() + 1.0) / 2.0
|
290 |
+
recons = (recons.permute(0, 2, 1, 3, 4).float() + 1.0) / 2.0
|
291 |
+
if return_latent:
|
292 |
+
return frames, recons, latents
|
293 |
+
return frames, recons
|
294 |
+
|
295 |
+
|
296 |
+
class TeaCache:
|
297 |
+
def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
|
298 |
+
self.num_inference_steps = num_inference_steps
|
299 |
+
self.step = 0
|
300 |
+
self.accumulated_rel_l1_distance = 0
|
301 |
+
self.previous_modulated_input = None
|
302 |
+
self.rel_l1_thresh = rel_l1_thresh
|
303 |
+
self.previous_residual = None
|
304 |
+
self.previous_hidden_states = None
|
305 |
+
|
306 |
+
self.coefficients_dict = {
|
307 |
+
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
|
308 |
+
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
|
309 |
+
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
|
310 |
+
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02],
|
311 |
+
}
|
312 |
+
if model_id not in self.coefficients_dict:
|
313 |
+
supported_model_ids = ", ".join([i for i in self.coefficients_dict])
|
314 |
+
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).")
|
315 |
+
self.coefficients = self.coefficients_dict[model_id]
|
316 |
+
|
317 |
+
def check(self, dit: WanModel, x, t_mod):
|
318 |
+
modulated_inp = t_mod.clone()
|
319 |
+
if self.step == 0 or self.step == self.num_inference_steps - 1:
|
320 |
+
should_calc = True
|
321 |
+
self.accumulated_rel_l1_distance = 0
|
322 |
+
else:
|
323 |
+
coefficients = self.coefficients
|
324 |
+
rescale_func = np.poly1d(coefficients)
|
325 |
+
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
|
326 |
+
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
327 |
+
should_calc = False
|
328 |
+
else:
|
329 |
+
should_calc = True
|
330 |
+
self.accumulated_rel_l1_distance = 0
|
331 |
+
self.previous_modulated_input = modulated_inp
|
332 |
+
self.step += 1
|
333 |
+
if self.step == self.num_inference_steps:
|
334 |
+
self.step = 0
|
335 |
+
if should_calc:
|
336 |
+
self.previous_hidden_states = x.clone()
|
337 |
+
return not should_calc
|
338 |
+
|
339 |
+
def store(self, hidden_states):
|
340 |
+
self.previous_residual = hidden_states - self.previous_hidden_states
|
341 |
+
self.previous_hidden_states = None
|
342 |
+
|
343 |
+
def update(self, hidden_states):
|
344 |
+
hidden_states = hidden_states + self.previous_residual
|
345 |
return hidden_states
|