Spaces:
Running
on
Zero
Running
on
Zero
| ''' | |
| * The Recognize Anything Model (RAM) | |
| * Written by Xinyu Huang | |
| ''' | |
| import json | |
| import warnings | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from .bert_lora import BertConfig, BertLMHeadModel, BertModel | |
| from .swin_transformer_lora import SwinTransformer | |
| from .utils import * | |
| warnings.filterwarnings("ignore") | |
| class RAMLora(nn.Module): | |
| def __init__(self, | |
| condition_config=f'{CONFIG_PATH}/configs/condition_config.json', | |
| med_config=f'{CONFIG_PATH}/configs/med_config.json', | |
| image_size=384, | |
| vit='base', | |
| vit_grad_ckpt=False, | |
| vit_ckpt_layer=0, | |
| prompt='a picture of ', | |
| threshold=0.68, | |
| max_threthold=0.9, | |
| add_threthold=0, | |
| delete_tag_index=[], | |
| tag_list=f'{CONFIG_PATH}/data/ram_tag_list.txt', | |
| tag_list_chinese=f'{CONFIG_PATH}/data/ram_tag_list_chinese.txt'): | |
| r""" The Recognize Anything Model (RAM) inference module. | |
| RAM is a strong image tagging model, which can recognize any common category with high accuracy. | |
| Described in the paper " Recognize Anything: A Strong Image Tagging Model" https://recognize-anything.github.io/ | |
| Args: | |
| med_config (str): path for the mixture of encoder-decoder model's configuration file | |
| image_size (int): input image size | |
| vit (str): model size of vision transformer | |
| threshold (int): tagging threshold | |
| delete_tag_index (list): delete some tags that may disturb captioning | |
| """ | |
| super().__init__() | |
| # create image encoder | |
| if vit == 'swin_b': | |
| if image_size == 224: | |
| vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json' | |
| elif image_size == 384: | |
| vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json' | |
| vision_config = read_json(vision_config_path) | |
| assert image_size == vision_config['image_res'] | |
| # assert config['patch_size'] == 32 | |
| vision_width = vision_config['vision_width'] | |
| self.visual_encoder = SwinTransformer( | |
| img_size=vision_config['image_res'], | |
| patch_size=4, | |
| in_chans=3, | |
| embed_dim=vision_config['embed_dim'], | |
| depths=vision_config['depths'], | |
| num_heads=vision_config['num_heads'], | |
| window_size=vision_config['window_size'], | |
| mlp_ratio=4., | |
| qkv_bias=True, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| ape=False, | |
| patch_norm=True, | |
| use_checkpoint=False) | |
| elif vit == 'swin_l': | |
| if image_size == 224: | |
| vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json' | |
| elif image_size == 384: | |
| vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json' | |
| elif image_size == 444: | |
| vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_444.json' | |
| vision_config = read_json(vision_config_path) | |
| assert image_size == vision_config['image_res'] | |
| # assert config['patch_size'] == 32 | |
| vision_width = vision_config['vision_width'] | |
| self.visual_encoder = SwinTransformer( | |
| img_size=vision_config['image_res'], | |
| patch_size=4, | |
| in_chans=3, | |
| embed_dim=vision_config['embed_dim'], | |
| depths=vision_config['depths'], | |
| num_heads=vision_config['num_heads'], | |
| window_size=vision_config['window_size'], | |
| mlp_ratio=4., | |
| qkv_bias=True, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| ape=False, | |
| patch_norm=True, | |
| use_checkpoint=False) | |
| else: | |
| self.visual_encoder, vision_width = create_vit( | |
| vit, image_size, vit_grad_ckpt, vit_ckpt_layer) | |
| # create tokenzier | |
| self.tokenizer = init_tokenizer() | |
| # Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder | |
| # create image-tag interaction encoder | |
| encoder_config = BertConfig.from_json_file(med_config) | |
| encoder_config.encoder_width = 512 | |
| self.tag_encoder = BertModel(config=encoder_config, | |
| add_pooling_layer=False) | |
| # create image-tag-text decoder | |
| decoder_config = BertConfig.from_json_file(med_config) | |
| self.text_decoder = BertLMHeadModel(config=decoder_config) | |
| self.delete_tag_index = delete_tag_index | |
| self.prompt = prompt | |
| self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1 | |
| # load tag list | |
| self.tag_list = self.load_tag_list(tag_list) | |
| self.tag_list_chinese = self.load_tag_list(tag_list_chinese) | |
| # create image-tag recognition decoder | |
| self.threshold = threshold | |
| self.num_class = len(self.tag_list) | |
| q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json') | |
| q2l_config.encoder_width = 512 | |
| self.tagging_head = BertModel(config=q2l_config, | |
| add_pooling_layer=False) | |
| self.tagging_head.resize_token_embeddings(len(self.tokenizer)) | |
| # self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size) | |
| self.label_embed = nn.Parameter(torch.zeros(self.num_class, q2l_config.encoder_width)) | |
| if q2l_config.hidden_size != 512: | |
| self.wordvec_proj = nn.Linear(512, q2l_config.hidden_size) | |
| else: | |
| self.wordvec_proj = nn.Identity() | |
| self.fc = nn.Linear(q2l_config.hidden_size, 1) | |
| self.del_selfattention() | |
| # share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder" | |
| tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '', | |
| ' ') | |
| self.image_proj = nn.Linear(vision_width, 512) | |
| # self.label_embed = nn.Parameter(torch.load(f'{CONFIG_PATH}/data/textual_label_embedding.pth',map_location='cpu').float()) | |
| # adjust thresholds for some tags | |
| self.class_threshold = torch.ones(self.num_class) * self.threshold | |
| print(f'Loading default thretholds from .txt....') | |
| ram_class_threshold_path = f'{CONFIG_PATH}/data/ram_tag_list_threshold.txt' | |
| with open(ram_class_threshold_path, 'r', encoding='utf-8') as f: | |
| ram_class_threshold = [float(s.strip()) for s in f] | |
| for key,value in enumerate(ram_class_threshold): | |
| if value > max_threthold: | |
| self.class_threshold[key] = value | |
| else: | |
| self.class_threshold[key] = min(value + add_threthold, max_threthold) | |
| def load_tag_list(self, tag_list_file): | |
| with open(tag_list_file, 'r', encoding="utf-8") as f: | |
| tag_list = f.read().splitlines() | |
| tag_list = np.array(tag_list) | |
| return tag_list | |
| # delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label | |
| def del_selfattention(self): | |
| del self.tagging_head.embeddings | |
| for layer in self.tagging_head.encoder.layer: | |
| del layer.attention | |
| def generate_image_embeds(self, | |
| image, | |
| condition=False | |
| ): | |
| image_embeds = self.image_proj(self.visual_encoder(image)) | |
| return image_embeds | |
| def generate_tag(self, | |
| image, | |
| threshold=0.68, | |
| tag_input=None, | |
| ): | |
| label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed)) | |
| image_embeds = self.image_proj(self.visual_encoder(image)) | |
| image_atts = torch.ones(image_embeds.size()[:-1], | |
| dtype=torch.long).to(image.device) | |
| # recognized image tags using image-tag recogntiion decoder | |
| image_cls_embeds = image_embeds[:, 0, :] | |
| image_spatial_embeds = image_embeds[:, 1:, :] | |
| bs = image_spatial_embeds.shape[0] | |
| label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1) | |
| tagging_embed = self.tagging_head( | |
| encoder_embeds=label_embed, | |
| encoder_hidden_states=image_embeds, | |
| encoder_attention_mask=image_atts, | |
| return_dict=False, | |
| mode='tagging', | |
| ) | |
| logits = self.fc(tagging_embed[0]).squeeze(-1) | |
| targets = torch.where( | |
| torch.sigmoid(logits) > self.class_threshold.to(image.device), | |
| torch.tensor(1.0).to(image.device), | |
| torch.zeros(self.num_class).to(image.device)) | |
| tag = targets.cpu().numpy() | |
| tag[:,self.delete_tag_index] = 0 | |
| tag_output = [] | |
| tag_output_chinese = [] | |
| for b in range(bs): | |
| index = np.argwhere(tag[b] == 1) | |
| token = self.tag_list[index].squeeze(axis=1) | |
| # tag_output.append(' | '.join(token)) | |
| tag_output.append(', '.join(token)) | |
| token_chinese = self.tag_list_chinese[index].squeeze(axis=1) | |
| # tag_output_chinese.append(' | '.join(token_chinese)) | |
| tag_output_chinese.append(', '.join(token_chinese)) | |
| return tag_output, tag_output_chinese | |
| def condition_forward(self, | |
| image, | |
| threshold=0.68, | |
| condition_flag=None, | |
| tag_input=None, | |
| only_feature=True | |
| ): | |
| label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed)) | |
| image_embeds = self.image_proj(self.visual_encoder(image)) | |
| if only_feature: | |
| return image_embeds | |
| else: | |
| image_atts = torch.ones(image_embeds.size()[:-1], | |
| dtype=torch.long).to(image.device) | |
| # recognized image tags using image-tag recogntiion decoder | |
| image_cls_embeds = image_embeds[:, 0, :] | |
| image_spatial_embeds = image_embeds[:, 1:, :] | |
| bs = image_spatial_embeds.shape[0] | |
| label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1) | |
| tagging_embed = self.tagging_head( | |
| encoder_embeds=label_embed, | |
| encoder_hidden_states=image_embeds, | |
| encoder_attention_mask=image_atts, | |
| return_dict=False, | |
| mode='tagging', | |
| ) | |
| logits = self.fc(tagging_embed[0]).squeeze(-1) | |
| targets = torch.where( | |
| torch.sigmoid(logits) > self.class_threshold.to(image.device), | |
| torch.tensor(1.0).to(image.device), | |
| torch.zeros(self.num_class).to(image.device)) | |
| return image_embeds, logits, targets | |
| def generate_tag_openset(self, | |
| image, | |
| threshold=0.68, | |
| tag_input=None, | |
| ): | |
| label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed)) | |
| image_embeds = self.image_proj(self.visual_encoder(image)) | |
| image_atts = torch.ones(image_embeds.size()[:-1], | |
| dtype=torch.long).to(image.device) | |
| # recognized image tags using image-tag recogntiion decoder | |
| image_cls_embeds = image_embeds[:, 0, :] | |
| image_spatial_embeds = image_embeds[:, 1:, :] | |
| bs = image_spatial_embeds.shape[0] | |
| label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1) | |
| tagging_embed = self.tagging_head( | |
| encoder_embeds=label_embed, | |
| encoder_hidden_states=image_embeds, | |
| encoder_attention_mask=image_atts, | |
| return_dict=False, | |
| mode='tagging', | |
| ) | |
| logits = self.fc(tagging_embed[0]).squeeze(-1) | |
| targets = torch.where( | |
| torch.sigmoid(logits) > self.class_threshold.to(image.device), | |
| torch.tensor(1.0).to(image.device), | |
| torch.zeros(self.num_class).to(image.device)) | |
| tag = targets.cpu().numpy() | |
| tag[:,self.delete_tag_index] = 0 | |
| tag_output = [] | |
| for b in range(bs): | |
| index = np.argwhere(tag[b] == 1) | |
| token = self.tag_list[index].squeeze(axis=1) | |
| tag_output.append(' | '.join(token)) | |
| return tag_output | |
| # load RAM pretrained model parameters | |
| def ram(pretrained='', pretrained_condition='', **kwargs): | |
| model = RAMLora(**kwargs) | |
| if pretrained: | |
| if kwargs['vit'] == 'swin_b': | |
| model, msg = load_checkpoint_swinbase(model, pretrained, kwargs) | |
| elif kwargs['vit'] == 'swin_l': | |
| model, msg = load_checkpoint_swinlarge(model, pretrained, kwargs) | |
| else: | |
| model, msg = load_checkpoint(model, pretrained) | |
| print('vit:', kwargs['vit']) | |
| if pretrained_condition: | |
| model.load_state_dict(torch.load(pretrained_condition), strict=False) | |
| print(f'load lora from {pretrained_condition}') | |
| return model | |