Chain-of-Zoom / inference_coz_single.py
alexnasa's picture
VLM lora added
584caad verified
raw
history blame
8.59 kB
import os
import tempfile
import uuid
import torch
from PIL import Image
from torchvision import transforms
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from osediff_sd3 import OSEDiff_SD3_TEST, SD3Euler
from peft import PeftModel
# -------------------------------------------------------------------
# Helper: Resize & center-crop to a fixed square
# -------------------------------------------------------------------
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
w, h = img.size
scale = size / min(w, h)
new_w, new_h = int(w * scale), int(h * scale)
img = img.resize((new_w, new_h), Image.LANCZOS)
left = (new_w - size) // 2
top = (new_h - size) // 2
return img.crop((left, top, left + size, top + size))
# -------------------------------------------------------------------
# Helper: Generate a single VLM prompt for recursive_multiscale
# -------------------------------------------------------------------
def _generate_vlm_prompt(
vlm_model: Qwen2_5_VLForConditionalGeneration,
vlm_processor: AutoProcessor,
process_vision_info, # this is your helper that turns “messages” → image_inputs / video_inputs
prev_pil: Image.Image, # <– pass PIL instead of path
zoomed_pil: Image.Image, # <– pass PIL instead of path
device: str = "cuda"
) -> str:
"""
Given two PIL.Image inputs:
- prev_pil: the “full” image at the previous recursion.
- zoomed_pil: the cropped+resized (zoom) image for this step.
Returns a single “recursive_multiscale” prompt string.
"""
# (1) System message
message_text = (
"The second image is a zoom-in of the first image. "
"Based on this knowledge, what is in the second image? "
"Give me a set of words."
)
# (2) Build the two-image “chat” payload
#
# Instead of passing a filename, we pass the actual PIL.Image.
# The processor’s `process_vision_info` should know how to turn
# a message of the form {"type":"image","image": PIL_IMAGE} into tensors.
messages = [
{"role": "system", "content": message_text},
{
"role": "user",
"content": [
{"type": "image", "image": prev_pil},
{"type": "image", "image": zoomed_pil},
],
},
]
# (3) Now run the “chat” through the VL processor
#
# - `apply_chat_template` will build the tokenized prompt (without running it yet).
# - `process_vision_info` should inspect the same `messages` list and return
# `image_inputs` and `video_inputs` (tensors) for any attached PIL images.
text = vlm_processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = vlm_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
# (4) Generate and decode
generated = vlm_model.generate(**inputs, max_new_tokens=128)
trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids in zip(inputs.input_ids, generated)
]
out_text = vlm_processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return out_text.strip()
VLM_NAME = "Qwen/Qwen2.5-VL-3B-Instruct"
vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
VLM_NAME,
torch_dtype="auto",
device_map="auto" # immediately dispatches layers onto available GPUs
)
vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)
vlm_model = PeftModel.from_pretrained(vlm_model, "ckpt/VLM_LoRA/checkpoint-10000")
vlm_model = vlm_model.merge_and_unload()
vlm_model.eval()
device = "cuda"
process_size = 512
LORA_PATH = "ckpt/SR_LoRA/model_20001.pkl"
VAE_PATH = "ckpt/SR_VAE/vae_encoder_20001.pt"
SD3_MODEL = "stabilityai/stable-diffusion-3-medium-diffusers"
class _Args:
pass
args = _Args()
args.upscale = 4
args.lora_path = LORA_PATH
args.vae_path = VAE_PATH
args.pretrained_model_name_or_path = SD3_MODEL
args.merge_and_unload_lora = False
args.lora_rank = 4
args.vae_decoder_tiled_size = 224
args.vae_encoder_tiled_size = 1024
args.latent_tiled_size = 96
args.latent_tiled_overlap = 32
args.mixed_precision = "fp16"
args.efficient_memory = False
sd3 = SD3Euler()
sd3.text_enc_1.to(device)
sd3.text_enc_2.to(device)
sd3.text_enc_3.to(device)
sd3.transformer.to(device, dtype=torch.float32)
sd3.vae.to(device, dtype=torch.float32)
for p in (
sd3.text_enc_1,
sd3.text_enc_2,
sd3.text_enc_3,
sd3.transformer,
sd3.vae,
):
p.requires_grad_(False)
model_test = OSEDiff_SD3_TEST(args, sd3)
# -------------------------------------------------------------------
# Main Function: recursive_multiscale_sr (with multiple centers)
# -------------------------------------------------------------------
def recursive_multiscale_sr(
input_png_path: str,
upscale: int,
rec_num: int = 4,
centers: list[tuple[float, float]] = None,
) -> tuple[list[Image.Image], list[str]]:
"""
Perform `rec_num` recursive_multiscale super-resolution steps on a single PNG.
- input_png_path: path to a single .png file on disk.
- upscale: integer up-scale factor per recursion (e.g. 4).
- rec_num: how many recursion steps to perform.
- centers: a list of normalized (x, y) tuples in [0, 1], one per recursion step,
indicating where to center the low-res crop for each step. The list
length must equal rec_num. If centers is None, defaults to center=(0.5, 0.5)
for all steps.
Returns a tuple (sr_pil_list, prompt_list), where:
- sr_pil_list: list of PIL.Image outputs [SR1, SR2, …, SR_rec_num] in order.
- prompt_list: list of the VLM prompts generated at each recursion.
"""
###############################
# 0. Validate / fill default centers
###############################
if centers is None:
# Default: use center (0.5, 0.5) for every recursion
centers = [(0.5, 0.5) for _ in range(rec_num)]
else:
if not isinstance(centers, (list, tuple)) or len(centers) != rec_num:
raise ValueError(
f"`centers` must be a list of {rec_num} (x,y) tuples, but got length {len(centers)}."
)
unique_id = uuid.uuid4().hex
prefix = f"recms_{unique_id}_"
with tempfile.TemporaryDirectory(prefix=prefix) as td:
img0 = Image.open(input_png_path).convert("RGB")
img0 = resize_and_center_crop(img0, process_size)
prev_pil = img0.copy()
sr_pil_list: list[Image.Image] = []
prompt_list: list[str] = []
for rec in range(rec_num):
w, h = prev_pil.size # (512×512)
new_w, new_h = w // upscale, h // upscale
cx_norm, cy_norm = centers[rec]
cx = int(cx_norm * w)
cy = int(cy_norm * h)
half_w, half_h = new_w // 2, new_h // 2
left = max(0, min(cx - half_w, w - new_w))
top = max(0, min(cy - half_h, h - new_h))
right, bottom = left + new_w, top + new_h
cropped = prev_pil.crop((left, top, right, bottom))
zoomed_pil = cropped.resize((w, h), Image.BICUBIC)
prompt_tag = _generate_vlm_prompt(
vlm_model=vlm_model,
vlm_processor=vlm_processor,
process_vision_info=process_vision_info,
prev_pil=prev_pil, # <– PIL
zoomed_pil=zoomed_pil, # <– PIL
device=device,
)
to_tensor = transforms.ToTensor()
lq = to_tensor(zoomed_pil).unsqueeze(0).to(device) # (1,3,512,512)
lq = (lq * 2.0) - 1.0
with torch.no_grad():
out_tensor = model_test(lq, prompt=prompt_tag)[0]
out_tensor = out_tensor.clamp(-1.0, 1.0).cpu()
out_pil = transforms.ToPILImage()((out_tensor * 0.5) + 0.5)
prev_pil = out_pil
# (G) Append to results
sr_pil_list.append(out_pil)
prompt_list.append(prompt_tag)
return sr_pil_list, prompt_list