Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
from diffusers import DiffusionPipeline
|
3 |
-
import
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
-
|
7 |
#Alternativ erzeugen
|
8 |
#gr.Interface.load("models/stabilityai/stable-diffusion-2").launch()
|
9 |
|
10 |
-
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
|
11 |
|
12 |
-
|
|
|
|
|
13 |
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
|
14 |
-
|
15 |
-
|
16 |
-
[
|
17 |
-
"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
|
18 |
-
"https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80",
|
19 |
-
"https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80",
|
20 |
-
"https://images.unsplash.com/photo-1546456073-92b9f0a8d413?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
|
21 |
-
"https://images.unsplash.com/photo-1601412436009-d964bd02edbc?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=464&q=80",
|
22 |
-
]
|
23 |
-
), f"label {i}" if i != 0 else "label" * 50)
|
24 |
-
for i in range(3)
|
25 |
-
]
|
26 |
-
return images
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
with gr.Blocks() as demo:
|
31 |
with gr.Column(variant="panel"):
|
32 |
with gr.Row(variant="compact"):
|
33 |
-
|
34 |
label="Deine Beschreibung:",
|
35 |
show_label=False,
|
36 |
max_lines=1,
|
@@ -44,7 +59,7 @@ with gr.Blocks() as demo:
|
|
44 |
label="Erzeugte Bilder", show_label=False, elem_id="gallery"
|
45 |
).style(columns=[2], rows=[2], object_fit="contain", height="auto")
|
46 |
|
47 |
-
btn.click(erzeuge,
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from diffusers import DiffusionPipeline
|
3 |
+
import torch
|
4 |
+
#für die komplexere Variante der Erzeugung
|
5 |
+
#from diffusers import DDPMScheduler, UNet2DModel
|
6 |
+
#from PIL import Image
|
7 |
+
#import numpy as np
|
8 |
|
9 |
|
10 |
+
#######################################
|
11 |
#Alternativ erzeugen
|
12 |
#gr.Interface.load("models/stabilityai/stable-diffusion-2").launch()
|
13 |
|
|
|
14 |
|
15 |
+
#######################################
|
16 |
+
#Bild nach dem eingegebenen prompt erzeugen - mit Pipeline
|
17 |
+
def erzeuge(prompt):
|
18 |
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
|
19 |
+
pipeline.to("cuda")
|
20 |
+
return pipeline(prompt).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
########################################
|
23 |
+
#Bild erzeugen - nich über Pipeline sondern mit mehr Einstellungsmöglichkeiten
|
24 |
+
def erzeuge_komplex(prompt):
|
25 |
+
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
|
26 |
+
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
|
27 |
+
scheduler.set_timesteps(50)
|
28 |
+
|
29 |
+
sample_size = model.config.sample_size
|
30 |
+
noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda")
|
31 |
+
input = noise
|
32 |
+
|
33 |
+
for t in scheduler.timesteps:
|
34 |
+
with torch.no_grad():
|
35 |
+
noisy_residual = model(input, t).sample
|
36 |
+
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
|
37 |
+
input = prev_noisy_sample
|
38 |
+
|
39 |
+
image = (input / 2 + 0.5).clamp(0, 1)
|
40 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
|
41 |
+
image = Image.fromarray((image * 255).round().astype("uint8"))
|
42 |
+
return image
|
43 |
|
44 |
|
45 |
with gr.Blocks() as demo:
|
46 |
with gr.Column(variant="panel"):
|
47 |
with gr.Row(variant="compact"):
|
48 |
+
user_input = gr.Textbox(
|
49 |
label="Deine Beschreibung:",
|
50 |
show_label=False,
|
51 |
max_lines=1,
|
|
|
59 |
label="Erzeugte Bilder", show_label=False, elem_id="gallery"
|
60 |
).style(columns=[2], rows=[2], object_fit="contain", height="auto")
|
61 |
|
62 |
+
btn.click(erzeuge, inputs=[user_input], gallery)
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
demo.launch()
|