Update app.py
Browse files
app.py
CHANGED
|
@@ -79,11 +79,11 @@ YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
|
|
| 79 |
|
| 80 |
################################################
|
| 81 |
#LLM Model mit dem gearbeitet wird
|
| 82 |
-
#openai
|
| 83 |
-
|
| 84 |
-
MODEL_NAME ="gpt-4"
|
| 85 |
|
| 86 |
-
#HuggingFace
|
| 87 |
#repo_id = "meta-llama/Llama-2-13b-chat-hf"
|
| 88 |
repo_id = "HuggingFaceH4/zephyr-7b-alpha"
|
| 89 |
#repo_id = "meta-llama/Llama-2-70b-chat-hf"
|
|
@@ -170,10 +170,10 @@ def document_loading_splitting():
|
|
| 170 |
|
| 171 |
#Chroma DB die splits ablegen - vektorisiert...
|
| 172 |
def document_storage_chroma(splits):
|
| 173 |
-
#OpenAi embediings
|
| 174 |
Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), persist_directory = PATH_WORK + CHROMA_DIR)
|
| 175 |
|
| 176 |
-
#HF embeddings
|
| 177 |
#Chroma.from_documents(documents = splits, embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}), persist_directory = PATH_WORK + CHROMA_DIR)
|
| 178 |
|
| 179 |
#Mongo DB die splits ablegen - vektorisiert...
|
|
@@ -184,8 +184,11 @@ def document_storage_mongodb(splits):
|
|
| 184 |
index_name = MONGODB_INDEX_NAME)
|
| 185 |
|
| 186 |
#dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
|
| 187 |
-
def document_retrieval_chroma(llm, prompt):
|
|
|
|
| 188 |
embeddings = OpenAIEmbeddings()
|
|
|
|
|
|
|
| 189 |
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
|
| 190 |
#embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
| 191 |
#etwas weniger rechenaufwendig:
|
|
@@ -300,10 +303,10 @@ def invoke (prompt, history, rag_option, openai_api_key, temperature=0.9, max_n
|
|
| 300 |
###########################
|
| 301 |
#LLM auswählen (OpenAI oder HF)
|
| 302 |
###########################
|
| 303 |
-
#Anfrage an OpenAI
|
| 304 |
#llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature=temperature)#, top_p = top_p)
|
| 305 |
-
#oder an Hugging Face
|
| 306 |
-
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length":
|
| 307 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
| 308 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
| 309 |
|
|
|
|
| 79 |
|
| 80 |
################################################
|
| 81 |
#LLM Model mit dem gearbeitet wird
|
| 82 |
+
#openai-------------------------------------
|
| 83 |
+
MODEL_NAME = "gpt-3.5-turbo-16k"
|
| 84 |
+
#MODEL_NAME ="gpt-4"
|
| 85 |
|
| 86 |
+
#HuggingFace--------------------------------
|
| 87 |
#repo_id = "meta-llama/Llama-2-13b-chat-hf"
|
| 88 |
repo_id = "HuggingFaceH4/zephyr-7b-alpha"
|
| 89 |
#repo_id = "meta-llama/Llama-2-70b-chat-hf"
|
|
|
|
| 170 |
|
| 171 |
#Chroma DB die splits ablegen - vektorisiert...
|
| 172 |
def document_storage_chroma(splits):
|
| 173 |
+
#OpenAi embediings----------------------------------
|
| 174 |
Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), persist_directory = PATH_WORK + CHROMA_DIR)
|
| 175 |
|
| 176 |
+
#HF embeddings--------------------------------------
|
| 177 |
#Chroma.from_documents(documents = splits, embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}), persist_directory = PATH_WORK + CHROMA_DIR)
|
| 178 |
|
| 179 |
#Mongo DB die splits ablegen - vektorisiert...
|
|
|
|
| 184 |
index_name = MONGODB_INDEX_NAME)
|
| 185 |
|
| 186 |
#dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
|
| 187 |
+
def document_retrieval_chroma(llm, prompt):
|
| 188 |
+
#OpenAI embeddings -------------------------------
|
| 189 |
embeddings = OpenAIEmbeddings()
|
| 190 |
+
|
| 191 |
+
#HF embeddings -----------------------------------
|
| 192 |
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
|
| 193 |
#embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
| 194 |
#etwas weniger rechenaufwendig:
|
|
|
|
| 303 |
###########################
|
| 304 |
#LLM auswählen (OpenAI oder HF)
|
| 305 |
###########################
|
| 306 |
+
#Anfrage an OpenAI ----------------------------
|
| 307 |
#llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature=temperature)#, top_p = top_p)
|
| 308 |
+
#oder an Hugging Face --------------------------
|
| 309 |
+
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 128})
|
| 310 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
| 311 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
| 312 |
|