Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,6 +20,8 @@ from langchain.prompts import PromptTemplate
|
|
| 20 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 21 |
from langchain.vectorstores import Chroma
|
| 22 |
from chromadb.errors import InvalidDimensionException
|
|
|
|
|
|
|
| 23 |
|
| 24 |
#from langchain.vectorstores import MongoDBAtlasVectorSearch
|
| 25 |
#from pymongo import MongoClient
|
|
@@ -117,15 +119,28 @@ os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
|
|
| 117 |
#################################################
|
| 118 |
#Funktionen zur Verarbeitung
|
| 119 |
################################################
|
| 120 |
-
def add_text(history, text):
|
| 121 |
-
history = history + [(text, None)]
|
| 122 |
-
return history, gr.Textbox(value="", interactive=False)
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
def add_file(history, file):
|
| 126 |
-
history = history + [((file.name,), None)]
|
| 127 |
-
return history
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
# Funktion, um für einen best. File-typ ein directory-loader zu definieren
|
| 130 |
def create_directory_loader(file_type, directory_path):
|
| 131 |
#verscheidene Dokument loaders:
|
|
@@ -300,8 +315,8 @@ def chatbot_response(messages):
|
|
| 300 |
print("Bild.............................")
|
| 301 |
return responses
|
| 302 |
|
| 303 |
-
|
| 304 |
-
def invoke (prompt, history, rag_option, model_option, openai_api_key,
|
| 305 |
global splittet
|
| 306 |
print(splittet)
|
| 307 |
#Prompt an history anhängen und einen Text daraus machen
|
|
@@ -361,10 +376,26 @@ def invoke (prompt, history, rag_option, model_option, openai_api_key, temperat
|
|
| 361 |
except Exception as e:
|
| 362 |
raise gr.Error(e)
|
| 363 |
|
|
|
|
| 364 |
#Antwort als Stream ausgeben...
|
| 365 |
for i in range(len(result)):
|
| 366 |
time.sleep(0.05)
|
| 367 |
yield result[: i+1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
################################################
|
| 370 |
#GUI
|
|
@@ -375,21 +406,137 @@ def invoke (prompt, history, rag_option, model_option, openai_api_key, temperat
|
|
| 375 |
description = """<strong>Information:</strong> Hier wird ein <strong>Large Language Model (LLM)</strong> mit
|
| 376 |
<strong>Retrieval Augmented Generation (RAG)</strong> auf <strong>externen Daten</strong> verwendet.\n\n
|
| 377 |
"""
|
| 378 |
-
css = """.toast-wrap { display: none !important } """
|
| 379 |
-
examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']]
|
| 380 |
|
| 381 |
def vote(data: gr.LikeData):
|
| 382 |
if data.liked: print("You upvoted this response: " + data.value)
|
| 383 |
else: print("You downvoted this response: " + data.value)
|
| 384 |
|
| 385 |
-
def read_image(image, size=512):
|
| 386 |
-
return np.array(Image.fromarray(image).resize((size, size)))
|
| 387 |
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
additional_inputs = [
|
| 394 |
#gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
|
| 395 |
gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus"),
|
|
@@ -401,10 +548,6 @@ additional_inputs = [
|
|
| 401 |
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
|
| 402 |
]
|
| 403 |
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
with gr.Blocks() as demo:
|
| 409 |
reference_image = gr.Image(label="Reference Image")
|
| 410 |
|
|
@@ -424,7 +567,7 @@ with gr.Blocks() as demo:
|
|
| 424 |
)
|
| 425 |
|
| 426 |
gr.HTML(
|
| 427 |
-
|
| 428 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
| 429 |
<a href="https://github.com/magic-research/magic-animate" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
|
| 430 |
</a>
|
|
@@ -435,7 +578,7 @@ with gr.Blocks() as demo:
|
|
| 435 |
</div>
|
| 436 |
</div>
|
| 437 |
</div>
|
| 438 |
-
|
| 439 |
|
| 440 |
with gr.Row():
|
| 441 |
prompt = gr.Textbox(
|
|
@@ -453,33 +596,5 @@ with gr.Blocks() as demo:
|
|
| 453 |
#chatbot_stream.like(print_like_dislike, None, None)
|
| 454 |
|
| 455 |
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
iface = gr.Interface(
|
| 459 |
-
fn=chatbot_response,
|
| 460 |
-
inputs=[reference_image, chat_interface_stream],
|
| 461 |
-
outputs=chat_interface_stream,
|
| 462 |
-
title="Chatbot mit Bildeingabe",
|
| 463 |
-
description="Laden Sie ein Bild hoch oder interagieren Sie über den Chat."
|
| 464 |
-
)
|
| 465 |
-
|
| 466 |
-
iface.launch()
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
with gr.Row():
|
| 470 |
-
chatbot_stream.like(vote, None, None)
|
| 471 |
-
chat_interface_stream.queue().launch()
|
| 472 |
-
#with gr.Row():
|
| 473 |
-
#reference_image.queue().launch()
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
# when `first_frame` is updated
|
| 477 |
-
reference_image.upload(
|
| 478 |
-
read_image,
|
| 479 |
-
reference_image,
|
| 480 |
-
reference_image,
|
| 481 |
-
queue=False
|
| 482 |
-
)
|
| 483 |
-
"""
|
| 484 |
-
|
| 485 |
-
demo.queue().launch()
|
|
|
|
| 20 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 21 |
from langchain.vectorstores import Chroma
|
| 22 |
from chromadb.errors import InvalidDimensionException
|
| 23 |
+
from utils import *
|
| 24 |
+
from beschreibungen import *
|
| 25 |
|
| 26 |
#from langchain.vectorstores import MongoDBAtlasVectorSearch
|
| 27 |
#from pymongo import MongoClient
|
|
|
|
| 119 |
#################################################
|
| 120 |
#Funktionen zur Verarbeitung
|
| 121 |
################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
##############################################
|
| 124 |
+
#History - die Frage oder das File eintragen...
|
| 125 |
+
def add_text(history, prompt):
|
| 126 |
+
history = history + [(prompt, None)]
|
| 127 |
+
return history, prompt, "" #gr.Textbox(value="", interactive=False)
|
| 128 |
+
|
| 129 |
+
def add_file(history, file, prompt):
|
| 130 |
+
if (prompt == ""):
|
| 131 |
+
history = history + [((file.name,), None)]
|
| 132 |
+
else:
|
| 133 |
+
history = history + [((file.name,), None), (prompt, None)]
|
| 134 |
+
return history, prompt, ""
|
| 135 |
+
|
| 136 |
+
def transfer_input(inputs):
|
| 137 |
+
textbox = reset_textbox()
|
| 138 |
+
return (
|
| 139 |
+
inputs,
|
| 140 |
+
gr.update(value=""),
|
| 141 |
+
gr.Button.update(visible=True),
|
| 142 |
+
)
|
| 143 |
+
##################################################
|
| 144 |
# Funktion, um für einen best. File-typ ein directory-loader zu definieren
|
| 145 |
def create_directory_loader(file_type, directory_path):
|
| 146 |
#verscheidene Dokument loaders:
|
|
|
|
| 315 |
print("Bild.............................")
|
| 316 |
return responses
|
| 317 |
|
| 318 |
+
|
| 319 |
+
def invoke (prompt, history, rag_option, model_option, openai_api_key, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,):
|
| 320 |
global splittet
|
| 321 |
print(splittet)
|
| 322 |
#Prompt an history anhängen und einen Text daraus machen
|
|
|
|
| 376 |
except Exception as e:
|
| 377 |
raise gr.Error(e)
|
| 378 |
|
| 379 |
+
"""
|
| 380 |
#Antwort als Stream ausgeben...
|
| 381 |
for i in range(len(result)):
|
| 382 |
time.sleep(0.05)
|
| 383 |
yield result[: i+1]
|
| 384 |
+
"""
|
| 385 |
+
|
| 386 |
+
#Antwort als Stream ausgeben...
|
| 387 |
+
history[-1][1] = ""
|
| 388 |
+
for character in result:
|
| 389 |
+
history[-1][1] += character
|
| 390 |
+
time.sleep(0.03)
|
| 391 |
+
yield history, "Generating"
|
| 392 |
+
if shared_state.interrupted:
|
| 393 |
+
shared_state.recover()
|
| 394 |
+
try:
|
| 395 |
+
yield history, "Stop: Success"
|
| 396 |
+
return
|
| 397 |
+
except:
|
| 398 |
+
pass
|
| 399 |
|
| 400 |
################################################
|
| 401 |
#GUI
|
|
|
|
| 406 |
description = """<strong>Information:</strong> Hier wird ein <strong>Large Language Model (LLM)</strong> mit
|
| 407 |
<strong>Retrieval Augmented Generation (RAG)</strong> auf <strong>externen Daten</strong> verwendet.\n\n
|
| 408 |
"""
|
| 409 |
+
#css = """.toast-wrap { display: none !important } """
|
| 410 |
+
#examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']]
|
| 411 |
|
| 412 |
def vote(data: gr.LikeData):
|
| 413 |
if data.liked: print("You upvoted this response: " + data.value)
|
| 414 |
else: print("You downvoted this response: " + data.value)
|
| 415 |
|
|
|
|
|
|
|
| 416 |
|
| 417 |
+
print ("Start GUI")
|
| 418 |
+
with open("custom.css", "r", encoding="utf-8") as f:
|
| 419 |
+
customCSS = f.read()
|
| 420 |
|
| 421 |
+
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
| 422 |
+
history = gr.State([])
|
| 423 |
+
user_question = gr.State("")
|
| 424 |
+
with gr.Row():
|
| 425 |
+
gr.HTML("LI Chatot")
|
| 426 |
+
status_display = gr.Markdown("Success", elem_id="status_display")
|
| 427 |
+
gr.Markdown(description_top)
|
| 428 |
+
with gr.Row():
|
| 429 |
+
with gr.Column(scale=5):
|
| 430 |
+
with gr.Row():
|
| 431 |
+
chatbot = gr.Chatbot(elem_id="chuanhu_chatbot")
|
| 432 |
+
with gr.Row():
|
| 433 |
+
with gr.Column(scale=12):
|
| 434 |
+
user_input = gr.Textbox(
|
| 435 |
+
show_label=False, placeholder="Gib hier deinen Prompt ein...",
|
| 436 |
+
container=False
|
| 437 |
+
)
|
| 438 |
+
with gr.Column(min_width=70, scale=1):
|
| 439 |
+
submitBtn = gr.Button("Senden")
|
| 440 |
+
with gr.Column(min_width=70, scale=1):
|
| 441 |
+
cancelBtn = gr.Button("Stop")
|
| 442 |
+
with gr.Row():
|
| 443 |
+
emptyBtn = gr.ClearButton( [user_input, chatbot], value="🧹 Neue Session")
|
| 444 |
+
btn = gr.UploadButton("📁", file_types=["image", "video", "audio"])
|
| 445 |
+
|
| 446 |
+
with gr.Column():
|
| 447 |
+
with gr.Column(min_width=50, scale=1):
|
| 448 |
+
with gr.Tab(label="Parameter Einstellung"):
|
| 449 |
+
gr.Markdown("# Parameters")
|
| 450 |
+
rag_option = gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus")
|
| 451 |
+
model_option = gr.Radio(["HF1", "HF2"], label="Modellauswahl", value = "HF1")
|
| 452 |
+
|
| 453 |
+
top_p = gr.Slider(
|
| 454 |
+
minimum=-0,
|
| 455 |
+
maximum=1.0,
|
| 456 |
+
value=0.95,
|
| 457 |
+
step=0.05,
|
| 458 |
+
interactive=True,
|
| 459 |
+
label="Top-p",
|
| 460 |
+
)
|
| 461 |
+
temperature = gr.Slider(
|
| 462 |
+
minimum=0.1,
|
| 463 |
+
maximum=2.0,
|
| 464 |
+
value=1,
|
| 465 |
+
step=0.1,
|
| 466 |
+
interactive=True,
|
| 467 |
+
label="Temperature",
|
| 468 |
+
)
|
| 469 |
+
max_length_tokens = gr.Slider(
|
| 470 |
+
minimum=0,
|
| 471 |
+
maximum=512,
|
| 472 |
+
value=512,
|
| 473 |
+
step=8,
|
| 474 |
+
interactive=True,
|
| 475 |
+
label="Max Generation Tokens",
|
| 476 |
+
)
|
| 477 |
+
max_context_length_tokens = gr.Slider(
|
| 478 |
+
minimum=0,
|
| 479 |
+
maximum=4096,
|
| 480 |
+
value=2048,
|
| 481 |
+
step=128,
|
| 482 |
+
interactive=True,
|
| 483 |
+
label="Max History Tokens",
|
| 484 |
+
)
|
| 485 |
+
repetition_penalty=gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
|
| 486 |
+
anzahl_docs = gr.Slider(label="Anzahl Dokumente", value=3, minimum=1, maximum=10, step=1, interactive=True, info="wie viele Dokumententeile aus dem Vektorstore an den prompt gehängt werden", visible=True)
|
| 487 |
+
openai_key = gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1)
|
| 488 |
+
gr.Markdown(description)
|
| 489 |
+
|
| 490 |
+
#Argumente für generate Funktion als Input
|
| 491 |
+
predict_args = dict(
|
| 492 |
+
fn=generate,
|
| 493 |
+
inputs=[
|
| 494 |
+
user_question,
|
| 495 |
+
chatbot,
|
| 496 |
+
#history,
|
| 497 |
+
rag_option,
|
| 498 |
+
model_option,
|
| 499 |
+
openai_key,
|
| 500 |
+
anzahl_docs,
|
| 501 |
+
top_p,
|
| 502 |
+
temperature,
|
| 503 |
+
max_length_tokens,
|
| 504 |
+
max_context_length_tokens,
|
| 505 |
+
repetition_penalty
|
| 506 |
+
],
|
| 507 |
+
outputs=[ chatbot, status_display], #[ chatbot, history, status_display],
|
| 508 |
+
show_progress=True,
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
reset_args = dict(
|
| 513 |
+
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
# Chatbot
|
| 517 |
+
transfer_input_args_text = dict(
|
| 518 |
+
fn=add_text, inputs=[chatbot, user_input], outputs=[chatbot, user_question, user_input], show_progress=True
|
| 519 |
+
)
|
| 520 |
+
transfer_input_args_file = dict(
|
| 521 |
+
fn=add_file, inputs=[chatbot, btn, user_input], outputs=[chatbot, user_question, user_input], show_progress=True
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
predict_event1 = user_input.submit(**transfer_input_args_text, queue=False,).then(**predict_args)
|
| 525 |
+
predict_event3 = btn.upload(**transfer_input_args_file,queue=False,).then(**predict_args)
|
| 526 |
+
predict_event2 = submitBtn.click(**transfer_input_args_text, queue=False,).then(**predict_args)
|
| 527 |
+
|
| 528 |
+
cancelBtn.click(
|
| 529 |
+
cancels=[predict_event1,predict_event2, predict_event3 ]
|
| 530 |
+
)
|
| 531 |
+
demo.title = "LI-ChatBot"
|
| 532 |
+
|
| 533 |
+
demo.queue().launch(debug=True)
|
| 534 |
+
|
| 535 |
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
"""
|
| 540 |
additional_inputs = [
|
| 541 |
#gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
|
| 542 |
gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus"),
|
|
|
|
| 548 |
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
|
| 549 |
]
|
| 550 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
with gr.Blocks() as demo:
|
| 552 |
reference_image = gr.Image(label="Reference Image")
|
| 553 |
|
|
|
|
| 567 |
)
|
| 568 |
|
| 569 |
gr.HTML(
|
| 570 |
+
|
| 571 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
| 572 |
<a href="https://github.com/magic-research/magic-animate" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
|
| 573 |
</a>
|
|
|
|
| 578 |
</div>
|
| 579 |
</div>
|
| 580 |
</div>
|
| 581 |
+
)
|
| 582 |
|
| 583 |
with gr.Row():
|
| 584 |
prompt = gr.Textbox(
|
|
|
|
| 596 |
#chatbot_stream.like(print_like_dislike, None, None)
|
| 597 |
|
| 598 |
|
| 599 |
+
demo.queue().launch()
|
| 600 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|