Commit
·
41bb40c
1
Parent(s):
efd38a2
feat: Update app
Browse files
app.py
CHANGED
@@ -11,6 +11,15 @@ classifier = pipeline(
|
|
11 |
)
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def classification(task: str, doc: str) -> str:
|
15 |
"""Classify text into categories.
|
16 |
|
@@ -93,40 +102,55 @@ def classification(task: str, doc: str) -> str:
|
|
93 |
"sport",
|
94 |
]
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
elif task == "Offensive text detection":
|
99 |
if language == "sv":
|
100 |
-
hypothesis_template = "
|
101 |
-
candidate_labels =
|
|
|
|
|
|
|
102 |
elif language == "no":
|
103 |
-
hypothesis_template = "
|
104 |
-
candidate_labels =
|
|
|
|
|
|
|
105 |
else:
|
106 |
-
hypothesis_template = "
|
107 |
-
candidate_labels =
|
|
|
|
|
|
|
108 |
|
109 |
# Else the task is not supported, so raise an error
|
110 |
else:
|
111 |
raise ValueError(f"Task {task} not supported.")
|
112 |
|
|
|
|
|
|
|
|
|
|
|
113 |
# Run the classifier on the text
|
114 |
result = classifier(
|
115 |
-
doc,
|
|
|
|
|
116 |
)
|
117 |
|
118 |
print(result)
|
119 |
|
120 |
# Return the predicted label
|
121 |
return (
|
122 |
-
f"{result['labels'][0]
|
123 |
f"({confidence_str}: {result['scores'][0]:.0%})"
|
124 |
)
|
125 |
|
126 |
# Create a dropdown menu for the task
|
127 |
dropdown = gr.inputs.Dropdown(
|
128 |
label="Task",
|
129 |
-
choices=["Sentiment classification", "News topic classification", "
|
130 |
default="Sentiment classification",
|
131 |
)
|
132 |
|
@@ -136,7 +160,7 @@ interface = gr.Interface(
|
|
136 |
inputs=[dropdown, gr.inputs.Textbox(label="Text")],
|
137 |
outputs=gr.outputs.Label(type="text"),
|
138 |
title="Scandinavian zero-shot text classification",
|
139 |
-
description=
|
140 |
)
|
141 |
|
142 |
# Run the app
|
|
|
11 |
)
|
12 |
|
13 |
|
14 |
+
# Set the description for the interface
|
15 |
+
DESCRIPTION = """Classify text in Danish, Swedish or Norwegian into categories, without
|
16 |
+
any training data!
|
17 |
+
|
18 |
+
Note that the models will most likely *not* work as well as a finetuned model on your
|
19 |
+
specific data, but they can be used as a starting point for your own classification
|
20 |
+
task ✨"""
|
21 |
+
|
22 |
+
|
23 |
def classification(task: str, doc: str) -> str:
|
24 |
"""Classify text into categories.
|
25 |
|
|
|
102 |
"sport",
|
103 |
]
|
104 |
|
105 |
+
# Else if the task is spam detection, classify the text into spam or not spam
|
106 |
+
elif task == "Spam detection":
|
|
|
107 |
if language == "sv":
|
108 |
+
hypothesis_template = "Det här e-postmeddelandet ser {}"
|
109 |
+
candidate_labels = {
|
110 |
+
"ut som ett skräppostmeddelande": "Spam",
|
111 |
+
"inte ut som ett skräppostmeddelande": "Inte spam",
|
112 |
+
}
|
113 |
elif language == "no":
|
114 |
+
hypothesis_template = "Denne e-posten ser {}"
|
115 |
+
candidate_labels = {
|
116 |
+
"ut som en spam-e-post": "Spam",
|
117 |
+
"ikke ut som en spam-e-post": "Ikke spam",
|
118 |
+
}
|
119 |
else:
|
120 |
+
hypothesis_template = "Denne e-mail ligner {}"
|
121 |
+
candidate_labels = {
|
122 |
+
"en spam e-mail": "Spam",
|
123 |
+
"ikke en spam e-mail": "Ikke spam",
|
124 |
+
}
|
125 |
|
126 |
# Else the task is not supported, so raise an error
|
127 |
else:
|
128 |
raise ValueError(f"Task {task} not supported.")
|
129 |
|
130 |
+
# If `candidate_labels` is a list then convert it to a dictionary, where the keys
|
131 |
+
# are the entries in the list and the values are the keys capitalized
|
132 |
+
if isinstance(candidate_labels, list):
|
133 |
+
candidate_labels = {label: label.capitalize() for label in candidate_labels}
|
134 |
+
|
135 |
# Run the classifier on the text
|
136 |
result = classifier(
|
137 |
+
doc,
|
138 |
+
candidate_labels=list(candidate_labels.keys()),
|
139 |
+
hypothesis_template=hypothesis_template,
|
140 |
)
|
141 |
|
142 |
print(result)
|
143 |
|
144 |
# Return the predicted label
|
145 |
return (
|
146 |
+
f"{candidate_labels[result['labels'][0]]}\n"
|
147 |
f"({confidence_str}: {result['scores'][0]:.0%})"
|
148 |
)
|
149 |
|
150 |
# Create a dropdown menu for the task
|
151 |
dropdown = gr.inputs.Dropdown(
|
152 |
label="Task",
|
153 |
+
choices=["Sentiment classification", "News topic classification", "Spam detection"],
|
154 |
default="Sentiment classification",
|
155 |
)
|
156 |
|
|
|
160 |
inputs=[dropdown, gr.inputs.Textbox(label="Text")],
|
161 |
outputs=gr.outputs.Label(type="text"),
|
162 |
title="Scandinavian zero-shot text classification",
|
163 |
+
description=DESCRIPTION,
|
164 |
)
|
165 |
|
166 |
# Run the app
|