Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import spaces | |
| import time | |
| import os | |
| import transformers | |
| from transformers import pipeline | |
| import torch | |
| key = (os.getenv('API_KEY')) | |
| model_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
| pipeline = transformers.pipeline( | |
| "text-generation", | |
| model=model_id, | |
| model_kwargs={"torch_dtype": torch.bfloat16}, | |
| device_map="auto", | |
| token = key | |
| ) | |
| messages = [ | |
| {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, | |
| {"role": "user", "content": "Who are you?"}, | |
| ] | |
| terminators = [ | |
| pipeline.tokenizer.eos_token_id, | |
| pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
| ] | |
| outputs = pipeline( | |
| messages, | |
| max_new_tokens=256, | |
| eos_token_id=terminators, | |
| do_sample=True, | |
| temperature=0.6, | |
| top_p=0.9, | |
| ) | |
| # Fonction de génération de texte | |
| def generate_text(prompt): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| response_ids = model.generate(inputs.input_ids) | |
| response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True) | |
| return response_text | |
| # Définir une fonction pour l'interface de chat | |
| def chatbot(message, history): | |
| return generate_text(message) | |
| gr.ChatInterface(chatbot).launch() | |