aletrn commited on
Commit
fd91ade
·
1 Parent(s): a01cceb

[test] add raster helpers test cases

Browse files
samgis/io/raster_helpers.py CHANGED
@@ -1,9 +1,9 @@
1
  """helpers for computer vision duties"""
2
  import numpy as np
3
- from numpy import ndarray
4
 
5
  from samgis import app_logger
6
- from samgis.utilities.type_hints import TmsTerrainProvidersNames
7
 
8
 
9
  def get_nextzen_terrain_rgb_formula(red: ndarray, green: ndarray, blue: ndarray) -> ndarray:
@@ -34,8 +34,8 @@ def get_mapbox__terrain_rgb_formula(red: ndarray, green: ndarray, blue: ndarray)
34
 
35
 
36
  providers_terrain_rgb_formulas = {
37
- TmsTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME: get_mapbox__terrain_rgb_formula,
38
- TmsTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME: get_nextzen_terrain_rgb_formula
39
  }
40
 
41
 
@@ -84,6 +84,7 @@ def get_rgb_prediction_image(raster_cropped: ndarray, slope_cellsize: int, inver
84
 
85
  try:
86
  slope, curvature = get_slope_curvature(raster_cropped, slope_cellsize=slope_cellsize)
 
87
  channel0 = raster_cropped
88
  channel1 = normalize_array_list(
89
  [raster_cropped, slope, curvature], CHANNEL_EXAGGERATIONS_LIST, title=f"channel1_normlist")
@@ -126,7 +127,8 @@ def get_rgb_image(arr_channel0: ndarray, arr_channel1: ndarray, arr_channel2: nd
126
  data_rgb[:, :, 2] = normalize_array(
127
  arr_channel2.astype(float), high=1, norm_type="float", title=f"RGB:channel2") * 192
128
  if invert_image:
129
- data_rgb = np.bitwise_not(data_rgb)
 
130
  return data_rgb
131
  except ValueError as ve_get_rgb_image:
132
  msg = f"ve_get_rgb_image:{ve_get_rgb_image}."
@@ -208,6 +210,7 @@ def normalize_array(arr: ndarray, high: int = 255, norm_type: str = "float", inv
208
  ndarray: normalized numpy array
209
 
210
  """
 
211
 
212
  h_min_arr = np.nanmin(arr)
213
  h_arr_max = np.nanmax(arr)
@@ -217,7 +220,7 @@ def normalize_array(arr: ndarray, high: int = 255, norm_type: str = "float", inv
217
  f"normalize_array:: '{title}',h_min_arr:{h_min_arr},h_arr_max:{h_arr_max},h_diff:{h_diff}, dtype:{arr.dtype}.")
218
  except Exception as e_h_diff:
219
  app_logger.error(f"e_h_diff:{e_h_diff}.")
220
- raise e_h_diff
221
 
222
  if check_empty_array(arr, high) or check_empty_array(arr, h_diff):
223
  msg_ve = f"normalize_array::empty array '{title}',h_min_arr:{h_min_arr},h_arr_max:{h_arr_max},h_diff:{h_diff}, dtype:{arr.dtype}."
 
1
  """helpers for computer vision duties"""
2
  import numpy as np
3
+ from numpy import ndarray, bitwise_not
4
 
5
  from samgis import app_logger
6
+ from samgis.utilities.type_hints import XYZTerrainProvidersNames
7
 
8
 
9
  def get_nextzen_terrain_rgb_formula(red: ndarray, green: ndarray, blue: ndarray) -> ndarray:
 
34
 
35
 
36
  providers_terrain_rgb_formulas = {
37
+ XYZTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME: get_mapbox__terrain_rgb_formula,
38
+ XYZTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME: get_nextzen_terrain_rgb_formula
39
  }
40
 
41
 
 
84
 
85
  try:
86
  slope, curvature = get_slope_curvature(raster_cropped, slope_cellsize=slope_cellsize)
87
+
88
  channel0 = raster_cropped
89
  channel1 = normalize_array_list(
90
  [raster_cropped, slope, curvature], CHANNEL_EXAGGERATIONS_LIST, title=f"channel1_normlist")
 
127
  data_rgb[:, :, 2] = normalize_array(
128
  arr_channel2.astype(float), high=1, norm_type="float", title=f"RGB:channel2") * 192
129
  if invert_image:
130
+ app_logger.debug(f"data_rgb:{type(data_rgb)}, {data_rgb.dtype}.")
131
+ data_rgb = bitwise_not(data_rgb)
132
  return data_rgb
133
  except ValueError as ve_get_rgb_image:
134
  msg = f"ve_get_rgb_image:{ve_get_rgb_image}."
 
210
  ndarray: normalized numpy array
211
 
212
  """
213
+ np.seterr("raise")
214
 
215
  h_min_arr = np.nanmin(arr)
216
  h_arr_max = np.nanmax(arr)
 
220
  f"normalize_array:: '{title}',h_min_arr:{h_min_arr},h_arr_max:{h_arr_max},h_diff:{h_diff}, dtype:{arr.dtype}.")
221
  except Exception as e_h_diff:
222
  app_logger.error(f"e_h_diff:{e_h_diff}.")
223
+ raise ValueError(e_h_diff)
224
 
225
  if check_empty_array(arr, high) or check_empty_array(arr, h_diff):
226
  msg_ve = f"normalize_array::empty array '{title}',h_min_arr:{h_min_arr},h_arr_max:{h_arr_max},h_diff:{h_diff}, dtype:{arr.dtype}."
samgis/io/wrappers_helpers.py CHANGED
@@ -5,7 +5,7 @@ from xyzservices import providers, TileProvider
5
  from samgis import app_logger
6
  from samgis.io.coordinates_pixel_conversion import get_latlng_to_pixel_coordinates
7
  from samgis.utilities.constants import COMPLETE_URL_TILES_MAPBOX, COMPLETE_URL_TILES_NEXTZEN, CUSTOM_RESPONSE_MESSAGES
8
- from samgis.utilities.type_hints import ApiRequestBody, ContentTypes, TmsTerrainProvidersNames, TmsDefaultProvidersNames
9
  from samgis.utilities.utilities import base64_decode
10
 
11
 
@@ -153,12 +153,12 @@ def get_parsed_request_body(event: Dict or str) -> ApiRequestBody:
153
 
154
 
155
  mapbox_terrain_rgb = TileProvider(
156
- name=TmsTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME,
157
  url=COMPLETE_URL_TILES_MAPBOX,
158
  attribution=""
159
  )
160
  nextzen_terrain_rgb = TileProvider(
161
- name=TmsTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME,
162
  url=COMPLETE_URL_TILES_NEXTZEN,
163
  attribution=""
164
  )
@@ -167,11 +167,11 @@ nextzen_terrain_rgb = TileProvider(
167
  def get_url_tile(source_type: str):
168
  try:
169
  match source_type.lower():
170
- case TmsDefaultProvidersNames.DEFAULT_TILES_NAME_SHORT:
171
- return providers.query_name(TmsDefaultProvidersNames.DEFAULT_TILES_NAME)
172
- case TmsTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME:
173
  return mapbox_terrain_rgb
174
- case TmsTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME:
175
  app_logger.info("nextzen_terrain_rgb:", nextzen_terrain_rgb)
176
  return nextzen_terrain_rgb
177
 
@@ -184,4 +184,4 @@ def get_url_tile(source_type: str):
184
 
185
 
186
  def check_source_type_is_terrain(source: str | TileProvider):
187
- return isinstance(source, TileProvider) and source.name in list(TmsTerrainProvidersNames)
 
5
  from samgis import app_logger
6
  from samgis.io.coordinates_pixel_conversion import get_latlng_to_pixel_coordinates
7
  from samgis.utilities.constants import COMPLETE_URL_TILES_MAPBOX, COMPLETE_URL_TILES_NEXTZEN, CUSTOM_RESPONSE_MESSAGES
8
+ from samgis.utilities.type_hints import ApiRequestBody, ContentTypes, XYZTerrainProvidersNames, XYZDefaultProvidersNames
9
  from samgis.utilities.utilities import base64_decode
10
 
11
 
 
153
 
154
 
155
  mapbox_terrain_rgb = TileProvider(
156
+ name=XYZTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME,
157
  url=COMPLETE_URL_TILES_MAPBOX,
158
  attribution=""
159
  )
160
  nextzen_terrain_rgb = TileProvider(
161
+ name=XYZTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME,
162
  url=COMPLETE_URL_TILES_NEXTZEN,
163
  attribution=""
164
  )
 
167
  def get_url_tile(source_type: str):
168
  try:
169
  match source_type.lower():
170
+ case XYZDefaultProvidersNames.DEFAULT_TILES_NAME_SHORT:
171
+ return providers.query_name(XYZDefaultProvidersNames.DEFAULT_TILES_NAME)
172
+ case XYZTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME:
173
  return mapbox_terrain_rgb
174
+ case XYZTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME:
175
  app_logger.info("nextzen_terrain_rgb:", nextzen_terrain_rgb)
176
  return nextzen_terrain_rgb
177
 
 
184
 
185
 
186
  def check_source_type_is_terrain(source: str | TileProvider):
187
+ return isinstance(source, TileProvider) and source.name in list(XYZTerrainProvidersNames)
samgis/prediction_api/predictors.py CHANGED
@@ -7,10 +7,9 @@ from samgis.io.raster_helpers import get_raster_terrain_rgb_like, get_rgb_predic
7
  from samgis.io.tms2geotiff import download_extent
8
  from samgis.io.wrappers_helpers import check_source_type_is_terrain
9
  from samgis.prediction_api.sam_onnx import SegmentAnythingONNX
10
- from samgis.utilities.constants import MODEL_ENCODER_NAME, MODEL_DECODER_NAME, DEFAULT_URL_TILES, SLOPE_CELLSIZE, \
11
- DEFAULT_INPUT_SHAPE
12
- from samgis.utilities.type_hints import llist_float, dict_str_int, list_dict, tuple_ndarr_int, PIL_Image, \
13
- TmsTerrainProvidersNames
14
 
15
  models_dict = {"fastsam": {"instance": None}}
16
 
 
7
  from samgis.io.tms2geotiff import download_extent
8
  from samgis.io.wrappers_helpers import check_source_type_is_terrain
9
  from samgis.prediction_api.sam_onnx import SegmentAnythingONNX
10
+ from samgis.utilities.constants import (
11
+ MODEL_ENCODER_NAME, MODEL_DECODER_NAME, DEFAULT_URL_TILES, SLOPE_CELLSIZE, DEFAULT_INPUT_SHAPE)
12
+ from samgis.utilities.type_hints import llist_float, dict_str_int, list_dict, tuple_ndarr_int, PIL_Image
 
13
 
14
  models_dict = {"fastsam": {"instance": None}}
15
 
samgis/utilities/type_hints.py CHANGED
@@ -23,13 +23,13 @@ PIL_Image = Image
23
  tuple_ndarray_transform = tuple[ndarray, Affine]
24
 
25
 
26
- class TmsDefaultProvidersNames(StrEnum):
27
  """Default xyz provider names"""
28
  DEFAULT_TILES_NAME_SHORT = "openstreetmap"
29
  DEFAULT_TILES_NAME = "openstreetmap.mapnik"
30
 
31
 
32
- class TmsTerrainProvidersNames(StrEnum):
33
  """Custom xyz provider names for digital elevation models"""
34
  MAPBOX_TERRAIN_TILES_NAME = "mapbox.terrain-rgb"
35
  NEXTZEN_TERRAIN_TILES_NAME = "nextzen.terrarium"
 
23
  tuple_ndarray_transform = tuple[ndarray, Affine]
24
 
25
 
26
+ class XYZDefaultProvidersNames(StrEnum):
27
  """Default xyz provider names"""
28
  DEFAULT_TILES_NAME_SHORT = "openstreetmap"
29
  DEFAULT_TILES_NAME = "openstreetmap.mapnik"
30
 
31
 
32
+ class XYZTerrainProvidersNames(StrEnum):
33
  """Custom xyz provider names for digital elevation models"""
34
  MAPBOX_TERRAIN_TILES_NAME = "mapbox.terrain-rgb"
35
  NEXTZEN_TERRAIN_TILES_NAME = "nextzen.terrarium"
tests/io/test_raster_helpers.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import unittest
3
+ from unittest.mock import patch
4
+
5
+ from samgis.io import raster_helpers
6
+ from samgis.utilities.utilities import hash_calculate
7
+
8
+
9
+ def get_three_channels(size=5, param1=1000, param2=3, param3=-88):
10
+ arr_base = np.arange(size*size).reshape(size, size) / size**2
11
+ channel_0 = arr_base * param1
12
+ channel_1 = arr_base * param2
13
+ channel_2 = arr_base * param3
14
+ return channel_0, channel_1, channel_2
15
+
16
+
17
+ def helper_bell(size=10, param1=0.1, param2=2):
18
+ x = np.linspace(-size, size, num=size**2)
19
+ y = np.linspace(-size, size, num=size**2)
20
+ x, y = np.meshgrid(x, y)
21
+ return np.exp(-param1 * x ** param2 - param1 * y ** param2)
22
+
23
+
24
+ arr_5x5x5 = np.arange(125).reshape((5, 5, 5)) / 25
25
+ arr = np.arange(25).resize((5, 5))
26
+ channel0, channel1, channel2 = get_three_channels()
27
+ z = helper_bell()
28
+ slope_z_cellsize3, curvature_z_cellsize3 = raster_helpers.get_slope_curvature(z, slope_cellsize=3)
29
+
30
+
31
+ class Test(unittest.TestCase):
32
+
33
+ def test_get_rgb_prediction_image_real(self):
34
+ output = raster_helpers.get_rgb_prediction_image(z, slope_cellsize=61, invert_image=True)
35
+ hash_output = hash_calculate(output)
36
+ assert hash_output == b'QpQ9yxgCLw9cf3klNFKNFXIDHaSkuiZxkbpeQApR8pA='
37
+ output = raster_helpers.get_rgb_prediction_image(z, slope_cellsize=61, invert_image=False)
38
+ hash_output = hash_calculate(output)
39
+ assert hash_output == b'Y+iXO9w/sKzNVOw2rBh2JrVGJUFRqaa8/0F9hpevmLs='
40
+
41
+ @patch.object(raster_helpers, "get_slope_curvature")
42
+ @patch.object(raster_helpers, "normalize_array_list")
43
+ @patch.object(raster_helpers, "get_rgb_image")
44
+ def test_get_rgb_prediction_image_mocked(self, get_rgb_image_mocked, normalize_array_list, get_slope_curvature):
45
+ local_arr = np.array(z * 100, dtype=np.uint8)
46
+
47
+ get_slope_curvature.return_value = slope_z_cellsize3, curvature_z_cellsize3
48
+ normalize_array_list.side_effect = None
49
+ get_rgb_image_mocked.return_value = np.bitwise_not(local_arr)
50
+ output = raster_helpers.get_rgb_prediction_image(local_arr, slope_cellsize=61, invert_image=True)
51
+ hash_output = hash_calculate(output)
52
+ assert hash_output == b'BPIyVH64RgVunj42EuQAx4/v59Va8ZAjcMnuiGNqTT0='
53
+ get_rgb_image_mocked.return_value = local_arr
54
+ output = raster_helpers.get_rgb_prediction_image(local_arr, slope_cellsize=61, invert_image=False)
55
+ hash_output = hash_calculate(output)
56
+ assert hash_output == b'XX54sdLQQUrhkUHT6ikQZYSloMYDSfh/AGITDq6jnRM='
57
+
58
+ @patch.object(raster_helpers, "get_slope_curvature")
59
+ def test_get_rgb_prediction_image_value_error(self, get_slope_curvature):
60
+ msg = "this is a value error"
61
+ get_slope_curvature.side_effect = ValueError(msg)
62
+
63
+ with self.assertRaises(ValueError):
64
+ try:
65
+ raster_helpers.get_rgb_prediction_image(arr, slope_cellsize=3)
66
+ except ValueError as ve:
67
+ self.assertEqual(str(ve), msg)
68
+ raise ve
69
+
70
+ def test_get_rgb_image(self):
71
+ output = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=True)
72
+ hash_output = hash_calculate(output)
73
+ assert hash_output == b'YVnRWla5Ptfet6reSfM+OEIsGytLkeso6X+CRs34YHk='
74
+ output = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=False)
75
+ hash_output = hash_calculate(output)
76
+ assert hash_output == b'LC/kIZGUZULSrwwSXCeP1My2spTZdW9D7LH+tltwERs='
77
+
78
+ def test_get_rgb_image_value_error_1(self):
79
+ with self.assertRaises(ValueError):
80
+ try:
81
+ raster_helpers.get_rgb_image(arr_5x5x5, arr_5x5x5, arr_5x5x5, invert_image=True)
82
+ except ValueError as ve:
83
+ self.assertEqual(f"arr_size, wrong type:{type(arr_5x5x5)} or arr_size:{arr_5x5x5.shape}.", str(ve))
84
+ raise ve
85
+
86
+ def test_get_rgb_image_value_error2(self):
87
+ arr_0 = np.arange(25).reshape((5, 5))
88
+ arr_1 = np.arange(4).reshape((2, 2))
89
+ with self.assertRaises(ValueError):
90
+ try:
91
+ raster_helpers.get_rgb_image(arr_0, arr_1, channel2, invert_image=True)
92
+ except ValueError as ve:
93
+ self.assertEqual('could not broadcast input array from shape (2,2) into shape (5,5)', str(ve))
94
+ raise ve
95
+
96
+ def test_get_slope_curvature(self):
97
+ slope_output, curvature_output = raster_helpers.get_slope_curvature(z, slope_cellsize=3)
98
+ hash_curvature = hash_calculate(curvature_output)
99
+ hash_slope = hash_calculate(slope_output)
100
+ assert hash_curvature == b'LAL9JFOjJP9D6X4X3fVCpnitx9VPM9drS5YMHwMZ3iE='
101
+ assert hash_slope == b'IYf6x4G0lmR47j6HRS5kUYWdtmimhLz2nak8py75nwc='
102
+
103
+ def test_get_slope_curvature_value_error(self):
104
+ from samgis.io import raster_helpers
105
+
106
+ with self.assertRaises(ValueError):
107
+ try:
108
+ raster_helpers.get_slope_curvature(np.array(1), slope_cellsize=3)
109
+ except ValueError as ve:
110
+ self.assertEqual('not enough values to unpack (expected 2, got 0)', str(ve))
111
+ raise ve
112
+
113
+ def test_calculate_slope(self):
114
+ slope_output = raster_helpers.calculate_slope(z, cell_size=3)
115
+ hash_output = hash_calculate(slope_output)
116
+ assert hash_output == b'IYf6x4G0lmR47j6HRS5kUYWdtmimhLz2nak8py75nwc='
117
+
118
+ def test_calculate_slope_value_error(self):
119
+ with self.assertRaises(ValueError):
120
+ try:
121
+ raster_helpers.calculate_slope(np.array(1), cell_size=3)
122
+ except ValueError as ve:
123
+ self.assertEqual('not enough values to unpack (expected 2, got 0)', str(ve))
124
+ raise ve
125
+
126
+ def test_normalize_array(self):
127
+ def check_ndarrays_almost_equal(cls, arr1, arr2, places, check_type="float", check_ndiff=1):
128
+ count_abs_diff = 0
129
+ for list00, list01 in zip(arr1.tolist(), arr2.tolist()):
130
+ for el00, el01 in zip(list00, list01):
131
+ ndiff = abs(el00 - el01)
132
+ if el00 != el01:
133
+ count_abs_diff += 1
134
+ if check_type == "float":
135
+ cls.assertAlmostEqual(el00, el01, places=places)
136
+ cls.assertTrue(ndiff < check_ndiff)
137
+ print("count_abs_diff:", count_abs_diff)
138
+
139
+ normalized_array = raster_helpers.normalize_array(z)
140
+ hash_output = hash_calculate(normalized_array)
141
+ assert hash_output == b'MPkQwiiQa5NxL7LDvCS9V143YUEJT/Qh1aNEKc/Ehvo='
142
+
143
+ mult_variable = 3.423
144
+ test_array_input = np.arange(256).reshape((16, 16))
145
+ test_array_output = raster_helpers.normalize_array(test_array_input * mult_variable)
146
+ check_ndarrays_almost_equal(self, test_array_output, test_array_input, places=8)
147
+
148
+ test_array_output1 = raster_helpers.normalize_array(test_array_input * mult_variable, high=128, norm_type="int")
149
+ o = np.arange(256).reshape((16, 16)) / 2
150
+ expected_array_output1 = o.astype(int)
151
+ check_ndarrays_almost_equal(
152
+ self, test_array_output1, expected_array_output1, places=2, check_type="int", check_ndiff=2)
153
+
154
+ @patch.object(np, "nanmin")
155
+ @patch.object(np, "nanmax")
156
+ def test_normalize_array_floating_point_error_mocked(self, nanmax_mocked, nanmin_mocked):
157
+ nanmax_mocked.return_value = 100
158
+ nanmin_mocked.return_value = 100
159
+
160
+ with self.assertRaises(ValueError):
161
+ try:
162
+ raster_helpers.normalize_array(
163
+ np.arange(25).reshape((5, 5))
164
+ )
165
+ except ValueError as ve:
166
+ self.assertEqual(
167
+ "normalize_array:::h_arr_max:100,h_min_arr:100,fe:divide by zero encountered in divide.",
168
+ str(ve)
169
+ )
170
+ raise ve
171
+
172
+ @patch.object(np, "nanmin")
173
+ @patch.object(np, "nanmax")
174
+ def test_normalize_array_exception_error_mocked(self, nanmax_mocked, nanmin_mocked):
175
+ nanmax_mocked.return_value = 100
176
+ nanmin_mocked.return_value = np.NaN
177
+
178
+ with self.assertRaises(ValueError):
179
+ try:
180
+ raster_helpers.normalize_array(
181
+ np.arange(25).reshape((5, 5))
182
+ )
183
+ except ValueError as ve:
184
+ self.assertEqual("cannot convert float NaN to integer", str(ve))
185
+ raise ve
186
+
187
+ def test_normalize_array_value_error(self):
188
+ with self.assertRaises(ValueError):
189
+ try:
190
+ raster_helpers.normalize_array(
191
+ np.zeros((5, 5))
192
+ )
193
+ except ValueError as ve:
194
+ self.assertEqual(
195
+ "normalize_array::empty array '',h_min_arr:0.0,h_arr_max:0.0,h_diff:0.0, " 'dtype:float64.',
196
+ str(ve)
197
+ )
198
+ raise ve
199
+
200
+ def test_normalize_array_list(self):
201
+ normalized_array = raster_helpers.normalize_array_list([channel0, channel1, channel2])
202
+ hash_output = hash_calculate(normalized_array)
203
+ assert hash_output == b'+6IbhIpyb3vPElTgqqPkQdIR0umf4uFP2c7t5IaBVvI='
204
+
205
+ test_norm_list_output2 = raster_helpers.normalize_array_list(
206
+ [channel0, channel1, channel2], exaggerations_list=[2.0, 3.0, 5.0])
207
+ hash_variable2 = hash_calculate(test_norm_list_output2)
208
+ assert hash_variable2 == b'yYCYWCKO3i8NYsWk/wgYOzSRRLSLUprEs7mChJkdL+A='
209
+
210
+ def test_normalize_array_list_value_error(self):
211
+ with self.assertRaises(ValueError):
212
+ try:
213
+ raster_helpers.normalize_array_list([])
214
+ except ValueError as ve:
215
+ self.assertEqual("input list can't be empty:[].", str(ve))
216
+ raise ve
217
+
218
+ def test_check_empty_array(self):
219
+ a = np.zeros((10, 10))
220
+ b = np.ones((10, 10))
221
+ c = np.ones((10, 10)) * 2
222
+ d = np.zeros((10, 10))
223
+ d[1, 1] = np.nan
224
+ e = np.ones((10, 10)) * 3
225
+ e[1, 1] = np.nan
226
+
227
+ self.assertTrue(raster_helpers.check_empty_array(a, 999))
228
+ self.assertTrue(raster_helpers.check_empty_array(b, 0))
229
+ self.assertTrue(raster_helpers.check_empty_array(c, 2))
230
+ self.assertTrue(raster_helpers.check_empty_array(d, 0))
231
+ self.assertTrue(raster_helpers.check_empty_array(e, 3))
232
+ self.assertFalse(raster_helpers.check_empty_array(z, 3))
233
+
234
+ def test_get_nextzen_terrain_rgb_formula(self):
235
+ output = raster_helpers.get_nextzen_terrain_rgb_formula(channel0, channel1, channel2)
236
+ hash_output = hash_calculate(output)
237
+ assert hash_output == b'3KJ81YKmQRdccRZARbByfwo1iMVLj8xxz9mfsWki/qA='
238
+
239
+ def test_get_mapbox__terrain_rgb_formula(self):
240
+ output = raster_helpers.get_mapbox__terrain_rgb_formula(channel0, channel1, channel2)
241
+ hash_output = hash_calculate(output)
242
+ assert hash_output == b'RU7CcoKoR3Fkh5LE+m48DHRVUy/vGq6UgfOFUMXx07M='
243
+
244
+ def test_get_raster_terrain_rgb_like(self):
245
+ from samgis.utilities.type_hints import XYZTerrainProvidersNames
246
+
247
+ arr_input = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=True)
248
+ output_nextzen = raster_helpers.get_raster_terrain_rgb_like(
249
+ arr_input, XYZTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME)
250
+ hash_nextzen = hash_calculate(output_nextzen)
251
+ assert hash_nextzen == b'+o2OTJliJkkBoqiAIGnhJ4s0xoLQ4MxHOvevLhNxysE='
252
+ output_mapbox = raster_helpers.get_raster_terrain_rgb_like(
253
+ arr_input, XYZTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME)
254
+ hash_mapbox = hash_calculate(output_mapbox)
255
+ assert hash_mapbox == b'zWmekyKrpnmHnuDACnveCJl+o4GuhtHJmGlRDVwsce4='