|
import json |
|
import unittest |
|
from unittest.mock import patch |
|
|
|
import numpy as np |
|
import shapely |
|
from affine import Affine |
|
|
|
from samgis.prediction_api import predictors |
|
from samgis.prediction_api.predictors import samexporter_predict |
|
from tests import TEST_EVENTS_FOLDER |
|
|
|
|
|
class TestPredictors(unittest.TestCase): |
|
@patch.object(predictors, "download_extent") |
|
def test_get_raster_inference(self, download_extent_mocked): |
|
name_fn = "samexporter_predict" |
|
|
|
with open(TEST_EVENTS_FOLDER / f"{name_fn}.json") as tst_json: |
|
inputs_outputs = json.load(tst_json) |
|
for k, input_output in inputs_outputs.items(): |
|
input_payload = input_output["input"] |
|
prompt = input_payload["prompt"] |
|
model_name = input_payload["model_name"] |
|
bbox = input_payload["bbox"] |
|
zoom = input_payload["zoom"] |
|
print(f"k:{k}.") |
|
img = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "img.npy") |
|
affine_transform = Affine.from_gdal(*input_payload["matrix"]) |
|
download_extent_mocked.return_value = img, affine_transform |
|
expected_output = input_output["output"] |
|
|
|
output_dict = samexporter_predict( |
|
bbox, |
|
prompt, |
|
zoom, |
|
model_name |
|
) |
|
len_inference_out = output_dict["n_predictions"] |
|
geojson = output_dict["geojson"] |
|
n_shapes_geojson = output_dict["n_shapes_geojson"] |
|
|
|
assert isinstance(geojson, str) |
|
assert isinstance(n_shapes_geojson, int) |
|
assert len_inference_out == expected_output["n_predictions"] |
|
|
|
output_geojson = shapely.from_geojson(geojson) |
|
print("output_geojson::{}.".format(output_geojson)) |
|
assert isinstance(output_geojson, shapely.GeometryCollection) |
|
assert len(output_geojson.geoms) > 0 |
|
|
|
@patch.object(predictors, "get_raster_inference_with_embedding_from_dict") |
|
@patch.object(predictors, "SegmentAnythingONNX2") |
|
@patch.object(predictors, "download_extent") |
|
@patch.object(predictors, "get_vectorized_raster_as_geojson") |
|
def test_samexporter_predict_mocked( |
|
self, |
|
get_vectorized_raster_as_geojson_mocked, |
|
download_extent_mocked, |
|
segment_anything_onnx2_mocked, |
|
get_raster_inference_with_embedding_from_dict_mocked |
|
): |
|
""" |
|
model_instance = SegmentAnythingONNX() |
|
img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], zoom) |
|
transform = get_affine_transform_from_gdal(matrix) |
|
mask, n_predictions = get_raster_inference(img, prompt, models_instance, model_name) |
|
get_vectorized_raster_as_geojson(mask, matrix) |
|
""" |
|
aff = 1, 2, 3, 4, 5, 6 |
|
segment_anything_onnx2_mocked.return_value = "SegmentAnythingONNX2_instance" |
|
input_downloaded = np.arange(0, 300, 1).reshape((10, 10, 3)) |
|
download_extent_mocked.return_value = input_downloaded, aff |
|
mask_output = np.zeros((10, 10)) |
|
mask_output[4:4, 6:6] = 255.0 |
|
get_raster_inference_with_embedding_from_dict_mocked.return_value = mask_output, 1 |
|
get_vectorized_raster_as_geojson_mocked.return_value = {"geojson": "{}", "n_shapes_geojson": 2} |
|
output = samexporter_predict( |
|
bbox=[[1, 2], [3, 4]], prompt=[{}], zoom=10, model_name="mobile_sam", source_name="localtest" |
|
) |
|
assert output == {"n_predictions": 1, "geojson": "{}", "n_shapes_geojson": 2} |
|
|