File size: 4,409 Bytes
243f395 f2a79fa 3dbe011 7d6e00c 150cbc9 c6054f0 7d6e00c f2a79fa 7d6e00c da5737b 243f395 7d6e00c 28ea6eb 7d6e00c c6054f0 7d6e00c f2a79fa 7d6e00c f2a79fa 3dbe011 7d6e00c f2a79fa 7d6e00c f2a79fa 7d6e00c 150cbc9 6f1250c 7d6e00c 8c1934b 150cbc9 7d6e00c 150cbc9 f2a79fa 7d6e00c 3dbe011 7d6e00c f2a79fa 6f1250c 7d6e00c 6f1250c c6054f0 7d6e00c da5737b 7d6e00c da5737b 7d6e00c da5737b 6f1250c 7d6e00c 6f1250c da5737b 7d6e00c f2a79fa 7d6e00c f2a79fa 7d6e00c 28ea6eb c6054f0 7d6e00c 28ea6eb f2a79fa 7d6e00c f2a79fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import json
import time
from http import HTTPStatus
from typing import Dict, List
from aws_lambda_powertools.event_handler import content_types
from aws_lambda_powertools.utilities.typing import LambdaContext
from geojson_pydantic import FeatureCollection, Feature, Polygon
from pydantic import BaseModel, ValidationError
from src import app_logger
from src.prediction_api.predictor import base_predict
from src.utilities.constants import CUSTOM_RESPONSE_MESSAGES, MODEL_NAME, ZOOM
from src.utilities.utilities import base64_decode
PolygonFeatureCollectionModel = FeatureCollection[Feature[Polygon, Dict]]
class LatLngTupleLeaflet(BaseModel):
lat: float
lng: float
class RequestBody(BaseModel):
ne: LatLngTupleLeaflet
sw: LatLngTupleLeaflet
points: List[LatLngTupleLeaflet]
model: str = MODEL_NAME
zoom: float = ZOOM
class ResponseBody(BaseModel):
geojson: Dict = None
request_id: str
duration_run: float
message: str
def get_response(status: int, start_time: float, request_id: str, response_body: ResponseBody = None) -> str:
"""
Return a response for frontend clients.
Args:
status: status response
start_time: request start time (float)
request_id: str
response_body: dict we embed into our response
Returns:
str: json response
"""
response_body.duration_run = time.time() - start_time
response_body.message = CUSTOM_RESPONSE_MESSAGES[status]
response_body.request_id = request_id
response = {
"statusCode": status,
"header": {"Content-Type": content_types.APPLICATION_JSON},
"body": response_body.model_dump_json(),
"isBase64Encoded": False
}
app_logger.info(f"response type:{type(response)} => {response}.")
return json.dumps(response)
def get_parsed_bbox_points(request_input: RequestBody) -> Dict:
return {
"bbox": [
request_input.ne.lat, request_input.sw.lat,
request_input.ne.lng, request_input.sw.lng
],
"points": [[p.lat, p.lng] for p in request_input.points]
}
def lambda_handler(event: dict, context: LambdaContext):
app_logger.info(f"start with aws_request_id:{context.aws_request_id}.")
start_time = time.time()
if "version" in event:
app_logger.info(f"event version: {event['version']}.")
try:
app_logger.info(f"event:{json.dumps(event)}...")
app_logger.info(f"context:{context}...")
try:
body = event["body"]
except Exception as e_constants1:
app_logger.error(f"e_constants1:{e_constants1}.")
body = event
app_logger.info(f"body: {type(body)}, {body}...")
if isinstance(body, str):
body_decoded_str = base64_decode(body)
app_logger.info(f"body_decoded_str: {type(body_decoded_str)}, {body_decoded_str}...")
body = json.loads(body_decoded_str)
app_logger.info(f"body:{body}...")
try:
model_name = body["model"] if "model" in body else MODEL_NAME
zoom = body["zoom"] if "zoom" in body else ZOOM
body_request_validated = RequestBody(ne=body["ne"], sw=body["sw"], points=body["points"], model=model_name, zoom=zoom)
body_request = get_parsed_bbox_points(body_request_validated)
app_logger.info(f"validation ok - body_request:{body_request}, starting prediction...")
output_geojson_dict = base_predict(bbox=body_request["bbox"], model_name=body_request_validated["model"], zoom=body_request_validated["zoom"])
# raise ValidationError in case this is not a valid geojson by GeoJSON specification rfc7946
PolygonFeatureCollectionModel(**output_geojson_dict)
body_response = ResponseBody(geojson=output_geojson_dict)
response = get_response(HTTPStatus.OK.value, start_time, context.aws_request_id, body_response)
except ValidationError as ve:
app_logger.error(f"validation error:{ve}.")
response = get_response(HTTPStatus.UNPROCESSABLE_ENTITY.value, start_time, context.aws_request_id)
except Exception as e:
app_logger.error(f"exception:{e}.")
response = get_response(HTTPStatus.INTERNAL_SERVER_ERROR.value, start_time, context.aws_request_id)
app_logger.info(f"response_dumped:{response}...")
return response
|