File size: 3,251 Bytes
94729d4
5569a41
94729d4
 
 
 
c8c2cad
 
94729d4
 
 
5569a41
 
 
 
94729d4
5569a41
 
 
 
94729d4
5569a41
 
 
 
 
94729d4
5569a41
 
 
 
 
 
 
 
 
 
 
 
 
84a883f
5569a41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import json
import unittest
from unittest.mock import patch

import numpy as np

from samgis.prediction_api import predictors
from samgis.prediction_api.predictors import get_raster_inference, samexporter_predict
from tests import TEST_EVENTS_FOLDER


class TestPredictors(unittest.TestCase):
    @patch.object(predictors, "SegmentAnythingONNX")
    def test_get_raster_inference(self, segment_anything_onnx_mocked):
        name_fn = "samexporter_predict"

        with open(TEST_EVENTS_FOLDER / f"{name_fn}.json") as tst_json:
            inputs_outputs = json.load(tst_json)
            for k, input_output in inputs_outputs.items():
                model_mocked = segment_anything_onnx_mocked()

                img = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "img.npy")
                inference_out = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "inference_out.npy")
                mask = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "mask.npy")
                prompt = input_output["input"]["prompt"]
                model_name = input_output["input"]["model_name"]

                model_mocked.embed.return_value = np.array(img)
                model_mocked.embed.side_effect = None
                model_mocked.predict_masks.return_value = inference_out
                model_mocked.predict_masks.side_effect = None
                print(f"k:{k}.")
                output_mask, len_inference_out = get_raster_inference(
                    img=img,
                    prompt=prompt,
                    models_instance=model_mocked,
                    model_name=model_name
                )
                assert np.array_equal(output_mask, mask)
                assert len_inference_out == input_output["output"]["n_predictions"]

    @patch.object(predictors, "get_raster_inference_with_embedding_from_dict")
    @patch.object(predictors, "SegmentAnythingONNX")
    @patch.object(predictors, "download_extent")
    @patch.object(predictors, "get_vectorized_raster_as_geojson")
    def test_samexporter_predict(
            self,
            get_vectorized_raster_as_geojson_mocked,
            download_extent_mocked,
            segment_anything_onnx_mocked,
            get_raster_inference_with_embedding_from_dict_mocked
    ):
        """
        model_instance = SegmentAnythingONNX()
        img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], zoom)
        transform = get_affine_transform_from_gdal(matrix)
        mask, n_predictions = get_raster_inference(img, prompt, models_instance, model_name)
        get_vectorized_raster_as_geojson(mask, matrix)
        """
        aff = 1, 2, 3, 4, 5, 6
        segment_anything_onnx_mocked.return_value = "SegmentAnythingONNX_instance"
        download_extent_mocked.return_value = np.zeros((10, 10)), aff
        get_raster_inference_with_embedding_from_dict_mocked.return_value = np.ones((10, 10)), 1
        get_vectorized_raster_as_geojson_mocked.return_value = {"geojson": "{}", "n_shapes_geojson": 2}
        output = samexporter_predict(
            bbox=[[1, 2], [3, 4]], prompt=[{}], zoom=10, model_name="fastsam", source_name="localtest"
        )
        assert output == {"n_predictions": 1, "geojson": "{}", "n_shapes_geojson": 2}