File size: 1,402 Bytes
d95b5e7
2979556
b8aa611
2979556
d95b5e7
 
2979556
d95b5e7
 
 
b8aa611
 
0a91cb6
b8aa611
b2779ca
d95b5e7
0a91cb6
d95b5e7
b8aa611
d95b5e7
 
b8aa611
d95b5e7
 
 
 
 
 
b8aa611
d95b5e7
7c6fa68
d95b5e7
 
 
 
 
b8aa611
 
 
74786b2
d95b5e7
 
 
 
 
 
 
b8aa611
d95b5e7
 
7c6fa68
 
 
 
b8aa611
7c6fa68
b8aa611
 
7c6fa68
d95b5e7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
[tool.poetry]
name = "samgis"
version = "1.2.2"
description = "A backend for machine learning instance segmentation on geospatial data even without dedicated graphics cards."
authors = ["alessandro trinca tornidor <[email protected]>"]
license = "MIT license"
readme = "README.md"

[tool.poetry.dependencies]
bson = "^0.5.10"
contextily = "^1.5.2"
geopandas = "^0.14.3"
loguru = "^0.7.2"
numpy = "^1.26.4"
onnxruntime = "1.16.3"
opencv-python-headless = "^4.8.1.78"
pillow = "^10.2.0"
python = "^3.11"
python-dotenv = "^1.0.1"
rasterio = "^1.3.9"
requests = "^2.31.0"
samgis-core = "^1.0.3"

[tool.poetry.group.aws_lambda]
optional = true

[tool.poetry.group.aws_lambda.dependencies]
aws-lambda-powertools = "^2.30.2"
awslambdaric = "^2.0.10"
jmespath = "^1.0.1"
pydantic = "^2.5.3"

[tool.poetry.group.test]
optional = true

[tool.poetry.group.test.dependencies]
pytest = "7.4.4"
pytest-cov = "4.1.0"
python-dotenv = "^1.0.1"
httpx = "^0.26.0"

[tool.poetry.group.docs]
optional = true

[tool.poetry.group.docs.dependencies]
sphinx = "^7.2.6"
sphinx-autodoc-typehints = "^1.25.2"
sphinxcontrib-openapi = "^0.8.4"
myst-parser = "^2.0.0"

[tool.poetry.group.fastapi]
optional = true

[tool.poetry.group.fastapi.dependencies]
fastapi = "^0.110.0"
loguru = "^0.7.2"
pydantic = "^2.6.3"
uvicorn = "^0.28.0" 

[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"