|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from ..llava_arch import LlavaMetaForCausalLM, LlavaMetaModel |
|
from .mpt.modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel |
|
|
|
|
|
class LlavaMPTConfig(MPTConfig): |
|
model_type = "llava_mpt" |
|
|
|
|
|
class LlavaMPTModel(LlavaMetaModel, MPTModel): |
|
config_class = LlavaMPTConfig |
|
|
|
def __init__(self, config: MPTConfig): |
|
config.hidden_size = config.d_model |
|
super(LlavaMPTModel, self).__init__(config) |
|
|
|
def embed_tokens(self, x): |
|
return self.wte(x) |
|
|
|
|
|
class LlavaMPTForCausalLM(MPTForCausalLM, LlavaMetaForCausalLM): |
|
config_class = LlavaMPTConfig |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config): |
|
super(MPTForCausalLM, self).__init__(config) |
|
|
|
if not config.tie_word_embeddings: |
|
raise ValueError("MPTForCausalLM only supports tied word embeddings") |
|
self.transformer = LlavaMPTModel(config) |
|
self.logit_scale = None |
|
if config.logit_scale is not None: |
|
logit_scale = config.logit_scale |
|
if isinstance(logit_scale, str): |
|
if logit_scale == "inv_sqrt_d_model": |
|
logit_scale = 1 / math.sqrt(config.d_model) |
|
else: |
|
raise ValueError( |
|
f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." |
|
) |
|
self.logit_scale = logit_scale |
|
|
|
def get_model(self): |
|
return self.transformer |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, LlavaMPTModel): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
images=None, |
|
): |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.return_dict |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
( |
|
input_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, attention_mask, past_key_values, labels, images |
|
) |
|
outputs = self.transformer( |
|
input_ids=input_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id, |
|
return_dict=return_dict, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
use_cache=use_cache, |
|
) |
|
|
|
logits = F.linear( |
|
outputs.last_hidden_state.to(self.transformer.wte.weight.device), |
|
self.transformer.wte.weight, |
|
) |
|
if self.logit_scale is not None: |
|
if self.logit_scale == 0: |
|
warnings.warn( |
|
f"Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs." |
|
) |
|
logits *= self.logit_scale |
|
loss = None |
|
if labels is not None: |
|
labels = torch.roll(labels, shifts=-1) |
|
labels[:, -1] = -100 |
|
loss = F.cross_entropy( |
|
logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1) |
|
) |
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs |
|
): |
|
if inputs_embeds is not None: |
|
raise NotImplementedError("inputs_embeds is not implemented for MPT yet") |
|
attention_mask = kwargs["attention_mask"].bool() |
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]: |
|
raise NotImplementedError( |
|
"MPT does not support generation with right padding." |
|
) |
|
if self.transformer.attn_uses_sequence_id and self.training: |
|
sequence_id = torch.zeros_like(input_ids[:1]) |
|
else: |
|
sequence_id = None |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if self.transformer.prefix_lm: |
|
prefix_mask = torch.ones_like(attention_mask) |
|
if kwargs.get("use_cache") == False: |
|
raise NotImplementedError( |
|
"MPT with prefix_lm=True does not support use_cache=False." |
|
) |
|
else: |
|
prefix_mask = None |
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"prefix_mask": prefix_mask, |
|
"sequence_id": sequence_id, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache", True), |
|
"images": kwargs.get("images", None), |
|
} |
|
|
|
|
|
AutoConfig.register("llava_mpt", LlavaMPTConfig) |
|
AutoModelForCausalLM.register(LlavaMPTConfig, LlavaMPTForCausalLM) |
|
|