import os import numpy as np import json import cv2 import glob def get_mask_from_json(json_path, img): try: with open(json_path, 'r') as r: anno = json.loads(r.read()) except: with open(json_path, 'r', encoding="cp1252") as r: anno = json.loads(r.read()) inform = anno['shapes'] comments = anno['text'] is_sentence = anno['is_sentence'] height, width = img.shape[:2] ### sort polies by area area_list = [] valid_poly_list = [] for i in inform: label_id = i['label'] points = i['points'] if 'flag' == label_id.lower(): ## meaningless deprecated annotations continue tmp_mask = np.zeros((height, width), dtype=np.uint8) cv2.polylines(tmp_mask, np.array([points], dtype=np.int32), True, 1, 1) cv2.fillPoly(tmp_mask, np.array([points], dtype=np.int32), 1) tmp_area = tmp_mask.sum() area_list.append(tmp_area) valid_poly_list.append(i) ### ground-truth mask sort_index = np.argsort(area_list)[::-1].astype(np.int32) sort_index = list(sort_index) sort_inform = [] for s_idx in sort_index: sort_inform.append(valid_poly_list[s_idx]) mask = np.zeros((height, width), dtype=np.uint8) for i in sort_inform: label_id = i['label'] points = i['points'] if 'ignore' in label_id.lower(): label_value = 255 # ignored during evaluation else: label_value = 1 # target cv2.polylines(mask, np.array([points], dtype=np.int32), True, label_value, 1) cv2.fillPoly(mask, np.array([points], dtype=np.int32), label_value) return mask, comments, is_sentence if __name__ == '__main__': data_dir = './train' vis_dir = './vis' if not os.path.exists(vis_dir): os.makedirs(vis_dir) json_path_list = sorted(glob.glob(data_dir + '/*.json')) for json_path in json_path_list: img_path = json_path.replace('.json', '.jpg') img = cv2.imread(img_path)[:,:,::-1] # In generated mask, value 1 denotes valid target region, and value 255 stands for region ignored during evaluaiton. mask, comments, is_sentence = get_mask_from_json(json_path, img) ## visualization. Green for target, and red for ignore. valid_mask = (mask == 1).astype(np.float32)[:,:,None] ignore_mask = (mask == 255).astype(np.float32)[:,:,None] vis_img = img * (1 - valid_mask) * (1 - ignore_mask) + ((np.array([0,255,0]) * 0.6 + img * 0.4) * valid_mask + (np.array([255,0,0]) * 0.6 + img * 0.4) * ignore_mask) vis_img = np.concatenate([img, vis_img], 1) vis_path = os.path.join(vis_dir, json_path.split('/')[-1].replace('.json', '.jpg')) cv2.imwrite(vis_path, vis_img[:,:,::-1]) print('Visualization has been saved to: ', vis_path)