x-lai
Release training script
6144294
raw
history blame
5.64 kB
import argparse
import os
from io import BytesIO
import requests
import torch
from llava.conversation import SeparatorStyle, conv_templates
from llava.model import *
from llava.model.utils import KeywordsStoppingCriteria
from llava.utils import disable_torch_init
from PIL import Image
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionModel,
StoppingCriteria,
)
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def eval_model(args):
# Model
disable_torch_init()
model_name = os.path.expanduser(args.model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if "mpt" in model_name.lower():
model = LlavaMPTForCausalLM.from_pretrained(
model_name,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
use_cache=True,
).cuda()
else:
# model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
model = LlavaLlamaForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16, device_map="auto"
) # .cuda()
image_processor = CLIPImageProcessor.from_pretrained(
model.config.mm_vision_tower, torch_dtype=torch.float16
)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
vision_tower = model.get_model().vision_tower[0]
if vision_tower.device.type == "meta":
vision_tower = CLIPVisionModel.from_pretrained(
vision_tower.config._name_or_path,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).cuda()
model.get_model().vision_tower[0] = vision_tower
else:
vision_tower.to(device="cuda", dtype=torch.float16)
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IMAGE_PATCH_TOKEN]
)[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end:
(
vision_config.im_start_token,
vision_config.im_end_token,
) = tokenizer.convert_tokens_to_ids(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]
)
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
qs = args.query
if mm_use_im_start_end:
qs = (
qs
+ "\n"
+ DEFAULT_IM_START_TOKEN
+ DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
+ DEFAULT_IM_END_TOKEN
)
else:
qs = qs + "\n" + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
if "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt_multimodal"
else:
conv_mode = "multimodal"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print(
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
conv_mode, args.conv_mode, args.conv_mode
)
)
else:
args.conv_mode = conv_mode
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
inputs = tokenizer([prompt])
image = load_image(args.image_file)
image_tensor = image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][0]
input_ids = torch.as_tensor(inputs.input_ids).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
do_sample=True,
temperature=0.2,
max_new_tokens=1024,
stopping_criteria=[stopping_criteria],
)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(
f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids"
)
outputs = tokenizer.batch_decode(
output_ids[:, input_token_len:], skip_special_tokens=True
)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[: -len(stop_str)]
outputs = outputs.strip()
print(outputs)
import pdb
pdb.set_trace()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--image-file", type=str, required=True)
parser.add_argument("--query", type=str, required=True)
parser.add_argument("--conv-mode", type=str, default=None)
args = parser.parse_args()
eval_model(args)