Spaces:
Paused
Paused
import argparse | |
import os | |
from io import BytesIO | |
import requests | |
import torch | |
from llava.conversation import SeparatorStyle, conv_templates | |
from llava.model import * | |
from llava.model.utils import KeywordsStoppingCriteria | |
from llava.utils import disable_torch_init | |
from PIL import Image | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
CLIPImageProcessor, | |
CLIPVisionModel, | |
StoppingCriteria, | |
) | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
def load_image(image_file): | |
if image_file.startswith("http") or image_file.startswith("https"): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
else: | |
image = Image.open(image_file).convert("RGB") | |
return image | |
def eval_model(args): | |
# Model | |
disable_torch_init() | |
model_name = os.path.expanduser(args.model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
if "mpt" in model_name.lower(): | |
model = LlavaMPTForCausalLM.from_pretrained( | |
model_name, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float16, | |
use_cache=True, | |
).cuda() | |
else: | |
# model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda() | |
model = LlavaLlamaForCausalLM.from_pretrained( | |
model_name, torch_dtype=torch.float16, device_map="auto" | |
) # .cuda() | |
image_processor = CLIPImageProcessor.from_pretrained( | |
model.config.mm_vision_tower, torch_dtype=torch.float16 | |
) | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens( | |
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True | |
) | |
vision_tower = model.get_model().vision_tower[0] | |
if vision_tower.device.type == "meta": | |
vision_tower = CLIPVisionModel.from_pretrained( | |
vision_tower.config._name_or_path, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
).cuda() | |
model.get_model().vision_tower[0] = vision_tower | |
else: | |
vision_tower.to(device="cuda", dtype=torch.float16) | |
vision_config = vision_tower.config | |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids( | |
[DEFAULT_IMAGE_PATCH_TOKEN] | |
)[0] | |
vision_config.use_im_start_end = mm_use_im_start_end | |
if mm_use_im_start_end: | |
( | |
vision_config.im_start_token, | |
vision_config.im_end_token, | |
) = tokenizer.convert_tokens_to_ids( | |
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN] | |
) | |
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2 | |
qs = args.query | |
if mm_use_im_start_end: | |
qs = ( | |
qs | |
+ "\n" | |
+ DEFAULT_IM_START_TOKEN | |
+ DEFAULT_IMAGE_PATCH_TOKEN * image_token_len | |
+ DEFAULT_IM_END_TOKEN | |
) | |
else: | |
qs = qs + "\n" + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len | |
if "v1" in model_name.lower(): | |
conv_mode = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
conv_mode = "mpt_multimodal" | |
else: | |
conv_mode = "multimodal" | |
if args.conv_mode is not None and conv_mode != args.conv_mode: | |
print( | |
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( | |
conv_mode, args.conv_mode, args.conv_mode | |
) | |
) | |
else: | |
args.conv_mode = conv_mode | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
inputs = tokenizer([prompt]) | |
image = load_image(args.image_file) | |
image_tensor = image_processor.preprocess(image, return_tensors="pt")[ | |
"pixel_values" | |
][0] | |
input_ids = torch.as_tensor(inputs.input_ids).cuda() | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor.unsqueeze(0).half().cuda(), | |
do_sample=True, | |
temperature=0.2, | |
max_new_tokens=1024, | |
stopping_criteria=[stopping_criteria], | |
) | |
input_token_len = input_ids.shape[1] | |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
if n_diff_input_output > 0: | |
print( | |
f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids" | |
) | |
outputs = tokenizer.batch_decode( | |
output_ids[:, input_token_len:], skip_special_tokens=True | |
)[0] | |
outputs = outputs.strip() | |
if outputs.endswith(stop_str): | |
outputs = outputs[: -len(stop_str)] | |
outputs = outputs.strip() | |
print(outputs) | |
import pdb | |
pdb.set_trace() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-name", type=str, default="facebook/opt-350m") | |
parser.add_argument("--image-file", type=str, required=True) | |
parser.add_argument("--query", type=str, required=True) | |
parser.add_argument("--conv-mode", type=str, default=None) | |
args = parser.parse_args() | |
eval_model(args) | |