lisa-on-cuda / model /llava /eval /generate_webpage_data_from_table.py
x-lai
Release training script
3d9fba4
raw
history blame
4.16 kB
"""Generate json file for webpage."""
import json
import os
import re
# models = ['llama', 'alpaca', 'gpt35', 'bard']
models = ["vicuna"]
def read_jsonl(path: str, key: str = None):
data = []
with open(os.path.expanduser(path)) as f:
for line in f:
if not line:
continue
data.append(json.loads(line))
if key is not None:
data.sort(key=lambda x: x[key])
data = {item[key]: item for item in data}
return data
def trim_hanging_lines(s: str, n: int) -> str:
s = s.strip()
for _ in range(n):
s = s.split("\n", 1)[1].strip()
return s
if __name__ == "__main__":
questions = read_jsonl("table/question.jsonl", key="question_id")
# alpaca_answers = read_jsonl('table/answer/answer_alpaca-13b.jsonl', key='question_id')
# bard_answers = read_jsonl('table/answer/answer_bard.jsonl', key='question_id')
# gpt35_answers = read_jsonl('table/answer/answer_gpt35.jsonl', key='question_id')
# llama_answers = read_jsonl('table/answer/answer_llama-13b.jsonl', key='question_id')
vicuna_answers = read_jsonl(
"table/answer/answer_vicuna-13b.jsonl", key="question_id"
)
ours_answers = read_jsonl(
"table/results/llama-13b-hf-alpaca.jsonl", key="question_id"
)
review_vicuna = read_jsonl(
"table/review/review_vicuna-13b_llama-13b-hf-alpaca.jsonl", key="question_id"
)
# review_alpaca = read_jsonl('table/review/review_alpaca-13b_vicuna-13b.jsonl', key='question_id')
# review_bard = read_jsonl('table/review/review_bard_vicuna-13b.jsonl', key='question_id')
# review_gpt35 = read_jsonl('table/review/review_gpt35_vicuna-13b.jsonl', key='question_id')
# review_llama = read_jsonl('table/review/review_llama-13b_vicuna-13b.jsonl', key='question_id')
records = []
for qid in questions.keys():
r = {
"id": qid,
"category": questions[qid]["category"],
"question": questions[qid]["text"],
"answers": {
# 'alpaca': alpaca_answers[qid]['text'],
# 'llama': llama_answers[qid]['text'],
# 'bard': bard_answers[qid]['text'],
# 'gpt35': gpt35_answers[qid]['text'],
"vicuna": vicuna_answers[qid]["text"],
"ours": ours_answers[qid]["text"],
},
"evaluations": {
# 'alpaca': review_alpaca[qid]['text'],
# 'llama': review_llama[qid]['text'],
# 'bard': review_bard[qid]['text'],
"vicuna": review_vicuna[qid]["content"],
# 'gpt35': review_gpt35[qid]['text'],
},
"scores": {
"vicuna": review_vicuna[qid]["tuple"],
# 'alpaca': review_alpaca[qid]['score'],
# 'llama': review_llama[qid]['score'],
# 'bard': review_bard[qid]['score'],
# 'gpt35': review_gpt35[qid]['score'],
},
}
# cleanup data
cleaned_evals = {}
for k, v in r["evaluations"].items():
v = v.strip()
lines = v.split("\n")
# trim the first line if it's a pair of numbers
if re.match(r"\d+[, ]+\d+", lines[0]):
lines = lines[1:]
v = "\n".join(lines)
cleaned_evals[k] = v.replace("Assistant 1", "**Assistant 1**").replace(
"Assistant 2", "**Assistant 2**"
)
r["evaluations"] = cleaned_evals
records.append(r)
# Reorder the records, this is optional
for r in records:
if r["id"] <= 20:
r["id"] += 60
else:
r["id"] -= 20
for r in records:
if r["id"] <= 50:
r["id"] += 10
elif 50 < r["id"] <= 60:
r["id"] -= 50
for r in records:
if r["id"] == 7:
r["id"] = 1
elif r["id"] < 7:
r["id"] += 1
records.sort(key=lambda x: x["id"])
# Write to file
with open("webpage/data.json", "w") as f:
json.dump({"questions": records, "models": models}, f, indent=2)