Spaces:
Paused
Paused
import argparse | |
import glob | |
import json | |
import os | |
from io import BytesIO | |
import numpy as np | |
import requests | |
import torch | |
import tqdm | |
from llava.conversation import SeparatorStyle, conv_templates | |
from llava.model import * | |
from llava.model.utils import KeywordsStoppingCriteria | |
from llava.utils import disable_torch_init | |
from PIL import Image | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
CLIPImageProcessor, | |
CLIPVisionModel, | |
StoppingCriteria, | |
) | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
def load_image(image_file): | |
if image_file.startswith("http") or image_file.startswith("https"): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
else: | |
image = Image.open(image_file).convert("RGB") | |
return image | |
classes = [ | |
"wall", | |
"building", | |
"sky", | |
"floor", | |
"tree", | |
"ceiling", | |
"road", | |
"bed", | |
"windowpane", | |
"grass", | |
"cabinet", | |
"sidewalk", | |
"person", | |
"earth", | |
"door", | |
"table", | |
"mountain", | |
"plant", | |
"curtain", | |
"chair", | |
"car", | |
"water", | |
"painting", | |
"sofa", | |
"shelf", | |
"house", | |
"sea", | |
"mirror", | |
"rug", | |
"field", | |
"armchair", | |
"seat", | |
"fence", | |
"desk", | |
"rock", | |
"wardrobe", | |
"lamp", | |
"bathtub", | |
"railing", | |
"cushion", | |
"base", | |
"box", | |
"column", | |
"signboard", | |
"chest of drawers", | |
"counter", | |
"sand", | |
"sink", | |
"skyscraper", | |
"fireplace", | |
"refrigerator", | |
"grandstand", | |
"path", | |
"stairs", | |
"runway", | |
"case", | |
"pool table", | |
"pillow", | |
"screen door", | |
"stairway", | |
"river", | |
"bridge", | |
"bookcase", | |
"blind", | |
"coffee table", | |
"toilet", | |
"flower", | |
"book", | |
"hill", | |
"bench", | |
"countertop", | |
"stove", | |
"palm", | |
"kitchen island", | |
"computer", | |
"swivel chair", | |
"boat", | |
"bar", | |
"arcade machine", | |
"hovel", | |
"bus", | |
"towel", | |
"light", | |
"truck", | |
"tower", | |
"chandelier", | |
"awning", | |
"streetlight", | |
"booth", | |
"television receiver", | |
"airplane", | |
"dirt track", | |
"apparel", | |
"pole", | |
"land", | |
"bannister", | |
"escalator", | |
"ottoman", | |
"bottle", | |
"buffet", | |
"poster", | |
"stage", | |
"van", | |
"ship", | |
"fountain", | |
"conveyer belt", | |
"canopy", | |
"washer", | |
"plaything", | |
"swimming pool", | |
"stool", | |
"barrel", | |
"basket", | |
"waterfall", | |
"tent", | |
"bag", | |
"minibike", | |
"cradle", | |
"oven", | |
"ball", | |
"food", | |
"step", | |
"tank", | |
"trade name", | |
"microwave", | |
"pot", | |
"animal", | |
"bicycle", | |
"lake", | |
"dishwasher", | |
"screen", | |
"blanket", | |
"sculpture", | |
"hood", | |
"sconce", | |
"vase", | |
"traffic light", | |
"tray", | |
"ashcan", | |
"fan", | |
"pier", | |
"crt screen", | |
"plate", | |
"monitor", | |
"bulletin board", | |
"shower", | |
"radiator", | |
"glass", | |
"clock", | |
"flag", | |
] | |
def eval_model(args): | |
# Model | |
disable_torch_init() | |
model_name = os.path.expanduser(args.model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
if "mpt" in model_name.lower(): | |
model = LlavaMPTForCausalLM.from_pretrained( | |
model_name, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float16, | |
use_cache=True, | |
).cuda() | |
else: | |
# model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda() | |
model = LlavaLlamaForCausalLM.from_pretrained( | |
model_name, torch_dtype=torch.float16, device_map="auto" | |
) # .cuda() | |
image_processor = CLIPImageProcessor.from_pretrained( | |
model.config.mm_vision_tower, torch_dtype=torch.float16 | |
) | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens( | |
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True | |
) | |
vision_tower = model.get_model().vision_tower[0] | |
if vision_tower.device.type == "meta": | |
vision_tower = CLIPVisionModel.from_pretrained( | |
vision_tower.config._name_or_path, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
).cuda() | |
model.get_model().vision_tower[0] = vision_tower | |
else: | |
vision_tower.to(device="cuda", dtype=torch.float16) | |
vision_config = vision_tower.config | |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids( | |
[DEFAULT_IMAGE_PATCH_TOKEN] | |
)[0] | |
vision_config.use_im_start_end = mm_use_im_start_end | |
if mm_use_im_start_end: | |
( | |
vision_config.im_start_token, | |
vision_config.im_end_token, | |
) = tokenizer.convert_tokens_to_ids( | |
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN] | |
) | |
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2 | |
# paths for all images | |
images = sorted( | |
glob.glob("/mnt/proj74/xinlai/dataset/ade20k/images/training/*.jpg") | |
) | |
results = [] | |
for i, image_file in enumerate(tqdm.tqdm(images)): | |
# if i == 2: | |
# break | |
# if i % 100 == 0: | |
# print("i: {}, len(images): {}".format(i, len(images))) | |
print("i: {}, len(images): {}".format(i, len(images))) | |
image = load_image(image_file) | |
image_tensor = image_processor.preprocess(image, return_tensors="pt")[ | |
"pixel_values" | |
][0] | |
image_tensor = image_tensor.unsqueeze(0).half().cuda() | |
label_file = image_file.replace("images", "annotations").replace(".jpg", ".png") | |
label = Image.open(label_file) | |
label = np.array(label) | |
label_unique = np.unique(label) | |
for label in label_unique: | |
if label == 0: | |
continue | |
class_id = label - 1 | |
class_label = classes[class_id] | |
input_conv = "Can you describe the {} in this image?".format(class_label) | |
qs = input_conv | |
# qs = args.query | |
if mm_use_im_start_end: | |
qs = ( | |
qs | |
+ "\n" | |
+ DEFAULT_IM_START_TOKEN | |
+ DEFAULT_IMAGE_PATCH_TOKEN * image_token_len | |
+ DEFAULT_IM_END_TOKEN | |
) | |
else: | |
qs = qs + "\n" + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len | |
if "v1" in model_name.lower(): | |
conv_mode = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
conv_mode = "mpt_multimodal" | |
else: | |
conv_mode = "multimodal" | |
if args.conv_mode is not None and conv_mode != args.conv_mode: | |
print( | |
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( | |
conv_mode, args.conv_mode, args.conv_mode | |
) | |
) | |
else: | |
args.conv_mode = conv_mode | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
inputs = tokenizer([prompt]) | |
# image = load_image(args.image_file) | |
# image = load_image(image_file) | |
# image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
input_ids = torch.as_tensor(inputs.input_ids).cuda() | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor, | |
do_sample=True, | |
temperature=0.2, | |
max_new_tokens=512, # 1024, | |
stopping_criteria=[stopping_criteria], | |
) | |
input_token_len = input_ids.shape[1] | |
n_diff_input_output = ( | |
(input_ids != output_ids[:, :input_token_len]).sum().item() | |
) | |
if n_diff_input_output > 0: | |
print( | |
f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids" | |
) | |
outputs = tokenizer.batch_decode( | |
output_ids[:, input_token_len:], skip_special_tokens=True | |
)[0] | |
outputs = outputs.strip() | |
if outputs.endswith(stop_str): | |
outputs = outputs[: -len(stop_str)] | |
outputs = outputs.strip() | |
print("qs: {}, output: {}, image_file: {}".format(qs, outputs, image_file)) | |
results.append( | |
{ | |
"image_id": image_file.split("/")[-1], | |
"input": input_conv, | |
"output": outputs, | |
} | |
) | |
with open("/mnt/proj74/xinlai/LLM/LLaVA/ade20k_conversations.json", "w+") as f: | |
json.dump(results, f) | |
# print(outputs) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-name", type=str, default="facebook/opt-350m") | |
parser.add_argument("--image-file", type=str, required=True) | |
parser.add_argument("--query", type=str, required=True) | |
parser.add_argument("--conv-mode", type=str, default=None) | |
args = parser.parse_args() | |
eval_model(args) | |