Spaces:
Paused
Paused
import sys | |
import os | |
import cv2 | |
import argparse | |
import torch | |
import transformers | |
import numpy as np | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, CLIPImageProcessor | |
from model.LISA import LISA | |
from utils.conversation import get_default_conv_template | |
from model.segment_anything.utils.transforms import ResizeLongestSide | |
def parse_args(args): | |
parser = argparse.ArgumentParser(description='LISA chat') | |
parser.add_argument('--version', default='xinlai/LISA-13B-llama2-v0') | |
parser.add_argument('--vis_save_path', default='./vis_output', type=str) | |
parser.add_argument('--precision', default='bf16', type=str, choices=['fp32', 'bf16', 'fp16'], help="precision for inference") | |
parser.add_argument('--image-size', default=1024, type=int, help='image size') | |
parser.add_argument('--model-max-length', default=512, type=int) | |
parser.add_argument('--lora-r', default=-1, type=int) | |
parser.add_argument('--vision-tower', default='openai/clip-vit-large-patch14', type=str) | |
parser.add_argument('--local-rank', default=0, type=int, help='node rank') | |
parser.add_argument('--load_in_8bit', action='store_true', default=False) | |
parser.add_argument('--load_in_4bit', action='store_true', default=False) | |
return parser.parse_args(args) | |
def preprocess(x, | |
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1), | |
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1), | |
img_size=1024 | |
) -> torch.Tensor: | |
"""Normalize pixel values and pad to a square input.""" | |
# Normalize colors | |
x = (x - pixel_mean) / pixel_std | |
# Pad | |
h, w = x.shape[-2:] | |
padh = img_size - h | |
padw = img_size - w | |
x = F.pad(x, (0, padw, 0, padh)) | |
return x | |
def main(args): | |
args = parse_args(args) | |
os.makedirs(args.vis_save_path, exist_ok=True) | |
# Create model | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
args.version, | |
cache_dir=None, | |
model_max_length=args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
tokenizer.pad_token = tokenizer.unk_token | |
num_added_tokens = tokenizer.add_tokens('[SEG]') | |
ret_token_idx = tokenizer('[SEG]', add_special_tokens=False).input_ids | |
args.seg_token_idx = ret_token_idx[0] | |
model = LISA( | |
args.local_rank, | |
args.seg_token_idx, | |
tokenizer, | |
args.version, | |
args.lora_r, | |
args.precision, | |
load_in_8bit=args.load_in_8bit, | |
load_in_4bit=args.load_in_4bit, | |
) | |
weight = {} | |
visual_model_weight = torch.load(os.path.join(args.version, "pytorch_model-visual_model.bin")) | |
text_hidden_fcs_weight = torch.load(os.path.join(args.version, "pytorch_model-text_hidden_fcs.bin")) | |
weight.update(visual_model_weight) | |
weight.update(text_hidden_fcs_weight) | |
missing_keys, unexpected_keys = model.load_state_dict(weight, strict=False) | |
if args.precision == 'bf16': | |
model = model.bfloat16().cuda() | |
elif args.precision == 'fp16': | |
import deepspeed | |
model_engine = deepspeed.init_inference(model=model, | |
dtype=torch.half, | |
replace_with_kernel_inject=True, | |
replace_method="auto", | |
) | |
model = model_engine.module | |
else: | |
model = model.float().cuda() | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
image_token_len = 256 | |
clip_image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower) | |
transform = ResizeLongestSide(args.image_size) | |
while True: | |
conv = get_default_conv_template("vicuna").copy() | |
conv.messages = [] | |
prompt = input("Please input your prompt: ") | |
prompt = DEFAULT_IMAGE_TOKEN + " " + prompt | |
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len | |
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
conv.append_message(conv.roles[0], prompt) | |
conv.append_message(conv.roles[1], "") | |
prompt = conv.get_prompt() | |
image_path = input("Please input the image path: ") | |
if not os.path.exists(image_path): | |
print("File not found in {}".format(image_path)) | |
continue | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
original_size_list = [image.shape[:2]] | |
if args.precision == 'bf16': | |
images_clip = clip_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].unsqueeze(0).cuda().bfloat16() | |
elif args.precision == 'fp16': | |
images_clip = clip_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].unsqueeze(0).cuda().half() | |
else: | |
images_clip = clip_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].unsqueeze(0).cuda().float() | |
images = transform.apply_image(image) | |
resize_list = [images.shape[:2]] | |
if args.precision == 'bf16': | |
images = preprocess(torch.from_numpy(images).permute(2,0,1).contiguous()).unsqueeze(0).cuda().bfloat16() | |
elif args.precision == 'fp16': | |
images = preprocess(torch.from_numpy(images).permute(2,0,1).contiguous()).unsqueeze(0).cuda().half() | |
else: | |
images = preprocess(torch.from_numpy(images).permute(2,0,1).contiguous()).unsqueeze(0).cuda().float() | |
input_ids = tokenizer(prompt).input_ids | |
input_ids = torch.LongTensor(input_ids).unsqueeze(0).cuda() | |
output_ids, pred_masks = model.evaluate(images_clip, images, input_ids, resize_list, original_size_list, max_new_tokens=512, tokenizer=tokenizer) | |
text_output = tokenizer.decode(output_ids[0], skip_special_tokens=False) | |
text_output = text_output.replace(DEFAULT_IMAGE_PATCH_TOKEN, "").replace("\n", "").replace(" ", "") | |
print("text_output: ", text_output) | |
for i, pred_mask in enumerate(pred_masks): | |
if pred_mask.shape[0] == 0: | |
continue | |
pred_mask = pred_mask.detach().cpu().numpy()[0] | |
pred_mask = (pred_mask > 0) | |
save_path = "{}/{}_mask_{}.jpg".format(args.vis_save_path, image_path.split("/")[-1].split(".")[0], i) | |
cv2.imwrite(save_path, pred_mask * 100) | |
print("{} has been saved.".format(save_path)) | |
save_path = "{}/{}_masked_img_{}.jpg".format(args.vis_save_path, image_path.split("/")[-1].split(".")[0], i) | |
save_img = image.copy() | |
save_img[pred_mask] = (image * 0.5 + pred_mask[:,:,None].astype(np.uint8) * np.array([255,0,0]) * 0.5)[pred_mask] | |
save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR) | |
cv2.imwrite(save_path, save_img) | |
print("{} has been saved.".format(save_path)) | |
if __name__ == '__main__': | |
main(sys.argv[1:]) | |