Spaces:
Paused
Paused
File size: 4,209 Bytes
5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
from typing import List, Optional, Tuple
import torch
import transformers
from einops import rearrange
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
from torch import nn
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
def forward(
self,
hidden_states: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel
attention_mask: [bsz, q_len]
"""
bsz, q_len, _ = hidden_states.size()
query_states = (
self.q_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
key_states = (
self.k_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
# [bsz, q_len, nh, hd]
# [bsz, nh, q_len, hd]
kv_seq_len = key_states.shape[-2]
offset = 0
if past_key_value is not None:
offset = past_key_value[0].shape[-2]
kv_seq_len += offset
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, offset=offset
)
# [bsz, nh, t, hd]
assert not output_attentions, "output_attentions is not supported"
assert not use_cache, "use_cache is not supported"
assert past_key_value is None, "past_key_value is not supported"
# Flash attention codes from
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
# transform the data into the format required by flash attention
qkv = torch.stack(
[query_states, key_states, value_states], dim=2
) # [bsz, nh, 3, q_len, hd]
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
# We have disabled _prepare_decoder_attention_mask in LlamaModel
# the attention_mask should be the same as the key_padding_mask
key_padding_mask = attention_mask
if key_padding_mask is None:
qkv = rearrange(qkv, "b s ... -> (b s) ...")
max_s = q_len
cu_q_lens = torch.arange(
0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
)
output = flash_attn_unpadded_qkvpacked_func(
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
)
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
else:
nheads = qkv.shape[-2]
x = rearrange(qkv, "b s three h d -> b s (three h d)")
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(
x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads
)
output_unpad = flash_attn_unpadded_qkvpacked_func(
x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
)
output = rearrange(
pad_input(
rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz, q_len
),
"b s (h d) -> b s h d",
h=nheads,
)
return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, None
# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# [bsz, seq_len]
return attention_mask
def replace_llama_attn_with_flash_attn():
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
_prepare_decoder_attention_mask
)
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|