File size: 5,644 Bytes
5885496
 
3d9fba4
5885496
 
3d9fba4
 
 
 
 
5885496
6144294
 
 
 
 
 
 
5885496
 
 
 
 
 
 
 
3d9fba4
5885496
3d9fba4
5885496
3d9fba4
5885496
 
 
 
 
 
 
 
 
 
3d9fba4
 
 
 
 
 
5885496
 
3d9fba4
 
 
 
 
 
5885496
 
 
 
3d9fba4
 
 
5885496
 
3d9fba4
 
 
 
 
 
5885496
 
3d9fba4
5885496
3d9fba4
 
 
5885496
 
3d9fba4
 
 
 
 
 
5885496
 
 
 
3d9fba4
 
 
 
 
 
 
5885496
3d9fba4
5885496
 
 
 
 
 
 
 
 
3d9fba4
 
 
 
 
5885496
 
 
 
 
 
 
 
 
 
3d9fba4
 
 
5885496
 
 
 
 
 
 
 
3d9fba4
 
 
 
 
 
 
 
5885496
 
 
 
3d9fba4
 
 
 
 
 
5885496
 
3d9fba4
5885496
 
 
3d9fba4
 
 
 
5885496
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import os
from io import BytesIO

import requests
import torch
from llava.conversation import SeparatorStyle, conv_templates
from llava.model import *
from llava.model.utils import KeywordsStoppingCriteria
from llava.utils import disable_torch_init
from PIL import Image
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    CLIPImageProcessor,
    CLIPVisionModel,
    StoppingCriteria,
)

DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


def eval_model(args):
    # Model
    disable_torch_init()
    model_name = os.path.expanduser(args.model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    if "mpt" in model_name.lower():
        model = LlavaMPTForCausalLM.from_pretrained(
            model_name,
            low_cpu_mem_usage=True,
            torch_dtype=torch.float16,
            use_cache=True,
        ).cuda()
    else:
        # model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
        model = LlavaLlamaForCausalLM.from_pretrained(
            model_name, torch_dtype=torch.float16, device_map="auto"
        )  # .cuda()
    image_processor = CLIPImageProcessor.from_pretrained(
        model.config.mm_vision_tower, torch_dtype=torch.float16
    )

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens(
            [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
        )

    vision_tower = model.get_model().vision_tower[0]
    if vision_tower.device.type == "meta":
        vision_tower = CLIPVisionModel.from_pretrained(
            vision_tower.config._name_or_path,
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
        ).cuda()
        model.get_model().vision_tower[0] = vision_tower
    else:
        vision_tower.to(device="cuda", dtype=torch.float16)
    vision_config = vision_tower.config
    vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
        [DEFAULT_IMAGE_PATCH_TOKEN]
    )[0]
    vision_config.use_im_start_end = mm_use_im_start_end
    if mm_use_im_start_end:
        (
            vision_config.im_start_token,
            vision_config.im_end_token,
        ) = tokenizer.convert_tokens_to_ids(
            [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]
        )
    image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2

    qs = args.query
    if mm_use_im_start_end:
        qs = (
            qs
            + "\n"
            + DEFAULT_IM_START_TOKEN
            + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
            + DEFAULT_IM_END_TOKEN
        )
    else:
        qs = qs + "\n" + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len

    if "v1" in model_name.lower():
        conv_mode = "llava_v1"
    elif "mpt" in model_name.lower():
        conv_mode = "mpt_multimodal"
    else:
        conv_mode = "multimodal"

    if args.conv_mode is not None and conv_mode != args.conv_mode:
        print(
            "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
                conv_mode, args.conv_mode, args.conv_mode
            )
        )
    else:
        args.conv_mode = conv_mode

    conv = conv_templates[args.conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    inputs = tokenizer([prompt])

    image = load_image(args.image_file)
    image_tensor = image_processor.preprocess(image, return_tensors="pt")[
        "pixel_values"
    ][0]

    input_ids = torch.as_tensor(inputs.input_ids).cuda()

    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=image_tensor.unsqueeze(0).half().cuda(),
            do_sample=True,
            temperature=0.2,
            max_new_tokens=1024,
            stopping_criteria=[stopping_criteria],
        )

    input_token_len = input_ids.shape[1]
    n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
    if n_diff_input_output > 0:
        print(
            f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids"
        )
    outputs = tokenizer.batch_decode(
        output_ids[:, input_token_len:], skip_special_tokens=True
    )[0]
    outputs = outputs.strip()
    if outputs.endswith(stop_str):
        outputs = outputs[: -len(stop_str)]
    outputs = outputs.strip()
    print(outputs)

    import pdb

    pdb.set_trace()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
    parser.add_argument("--image-file", type=str, required=True)
    parser.add_argument("--query", type=str, required=True)
    parser.add_argument("--conv-mode", type=str, default=None)
    args = parser.parse_args()

    eval_model(args)