Spaces:
Paused
Paused
File size: 5,644 Bytes
5885496 3d9fba4 5885496 3d9fba4 5885496 6144294 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import argparse
import os
from io import BytesIO
import requests
import torch
from llava.conversation import SeparatorStyle, conv_templates
from llava.model import *
from llava.model.utils import KeywordsStoppingCriteria
from llava.utils import disable_torch_init
from PIL import Image
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionModel,
StoppingCriteria,
)
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def eval_model(args):
# Model
disable_torch_init()
model_name = os.path.expanduser(args.model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if "mpt" in model_name.lower():
model = LlavaMPTForCausalLM.from_pretrained(
model_name,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
use_cache=True,
).cuda()
else:
# model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
model = LlavaLlamaForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16, device_map="auto"
) # .cuda()
image_processor = CLIPImageProcessor.from_pretrained(
model.config.mm_vision_tower, torch_dtype=torch.float16
)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
vision_tower = model.get_model().vision_tower[0]
if vision_tower.device.type == "meta":
vision_tower = CLIPVisionModel.from_pretrained(
vision_tower.config._name_or_path,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).cuda()
model.get_model().vision_tower[0] = vision_tower
else:
vision_tower.to(device="cuda", dtype=torch.float16)
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IMAGE_PATCH_TOKEN]
)[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end:
(
vision_config.im_start_token,
vision_config.im_end_token,
) = tokenizer.convert_tokens_to_ids(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]
)
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
qs = args.query
if mm_use_im_start_end:
qs = (
qs
+ "\n"
+ DEFAULT_IM_START_TOKEN
+ DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
+ DEFAULT_IM_END_TOKEN
)
else:
qs = qs + "\n" + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
if "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt_multimodal"
else:
conv_mode = "multimodal"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print(
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
conv_mode, args.conv_mode, args.conv_mode
)
)
else:
args.conv_mode = conv_mode
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
inputs = tokenizer([prompt])
image = load_image(args.image_file)
image_tensor = image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][0]
input_ids = torch.as_tensor(inputs.input_ids).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
do_sample=True,
temperature=0.2,
max_new_tokens=1024,
stopping_criteria=[stopping_criteria],
)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(
f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids"
)
outputs = tokenizer.batch_decode(
output_ids[:, input_token_len:], skip_special_tokens=True
)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[: -len(stop_str)]
outputs = outputs.strip()
print(outputs)
import pdb
pdb.set_trace()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--image-file", type=str, required=True)
parser.add_argument("--query", type=str, required=True)
parser.add_argument("--conv-mode", type=str, default=None)
args = parser.parse_args()
eval_model(args)
|