Spaces:
Paused
Paused
File size: 9,821 Bytes
5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 6144294 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import argparse
import json
import math
import os
import random
import shortuuid
import torch
from llava import LlavaLlamaForCausalLM
from llava.conversation import conv_templates
from llava.utils import disable_torch_init
from PIL import Image
from tqdm import tqdm
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionModel,
StoppingCriteria,
)
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i : i + chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
def patch_config(config):
patch_dict = {
"use_mm_proj": True,
"mm_vision_tower": "openai/clip-vit-large-patch14",
"mm_hidden_size": 1024,
}
cfg = AutoConfig.from_pretrained(config)
if not hasattr(cfg, "mm_vision_tower"):
print(
f"`mm_vision_tower` not found in `{config}`, applying patch and save to disk."
)
for k, v in patch_dict.items():
setattr(cfg, k, v)
cfg.save_pretrained(config)
def eval_model(args):
# Model
disable_torch_init()
model_name = os.path.expanduser(args.model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if args.mm_projector is None:
patch_config(model_name)
model = LlavaLlamaForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16
).cuda()
image_processor = CLIPImageProcessor.from_pretrained(
model.config.mm_vision_tower, torch_dtype=torch.float16
)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
vision_tower = model.model.vision_tower[0]
vision_tower.to(device="cuda", dtype=torch.float16)
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IMAGE_PATCH_TOKEN]
)[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end:
(
vision_config.im_start_token,
vision_config.im_end_token,
) = tokenizer.convert_tokens_to_ids(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]
)
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
else:
# in case of using a pretrained model with only a MLP projector weights
model = LlavaLlamaForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16
).cuda()
vision_tower = CLIPVisionModel.from_pretrained(
args.vision_tower, torch_dtype=torch.float16
).cuda()
image_processor = CLIPImageProcessor.from_pretrained(
args.vision_tower, torch_dtype=torch.float16
)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IMAGE_PATCH_TOKEN]
)[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end:
(
vision_config.im_start_token,
vision_config.im_end_token,
) = tokenizer.convert_tokens_to_ids(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]
)
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
mm_projector = torch.nn.Linear(
vision_config.hidden_size, model.config.hidden_size
)
mm_projector_weights = torch.load(args.mm_projector, map_location="cpu")
mm_projector.load_state_dict(
{k.split(".")[-1]: v for k, v in mm_projector_weights.items()}
)
model.model.mm_projector = mm_projector.cuda().half()
model.model.vision_tower = [vision_tower]
questions = [
json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")
]
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
for i, line in enumerate(tqdm(questions)):
idx = line["question_id"]
image_file = line["image"]
qs = line["text"]
cur_prompt = qs
if mm_use_im_start_end:
qs = (
qs
+ "\n"
+ DEFAULT_IM_START_TOKEN
+ DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
+ DEFAULT_IM_END_TOKEN
)
else:
qs = qs + "\n" + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
if args.conv_mode == "simple_legacy":
qs += "\n\n### Response:"
# conv = default_conversation.copy()
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
prompt = conv.get_prompt()
inputs = tokenizer([prompt])
image = Image.open(os.path.join(args.image_folder, image_file))
# image.save(os.path.join(save_image_folder, image_file))
image_tensor = image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][0]
input_ids = torch.as_tensor(inputs.input_ids).cuda()
# new stopping implementation
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.tokenizer = tokenizer
self.start_len = None
self.input_ids = input_ids
def __call__(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
if self.start_len is None:
self.start_len = self.input_ids.shape[1]
else:
outputs = self.tokenizer.batch_decode(
output_ids[:, self.start_len :], skip_special_tokens=True
)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
keywords = ["###"]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
do_sample=True,
temperature=0.7,
max_new_tokens=1024,
stopping_criteria=[stopping_criteria],
)
input_token_len = input_ids.shape[1]
n_diff_input_output = (
(input_ids != output_ids[:, :input_token_len]).sum().item()
)
if n_diff_input_output > 0:
print(
f"[Warning] Sample {i}: {n_diff_input_output} output_ids are not the same as the input_ids"
)
outputs = tokenizer.batch_decode(
output_ids[:, input_token_len:], skip_special_tokens=True
)[0]
if args.conv_mode == "simple_legacy" or args.conv_mode == "simple":
while True:
cur_len = len(outputs)
outputs = outputs.strip()
for pattern in ["###", "Assistant:", "Response:"]:
if outputs.startswith(pattern):
outputs = outputs[len(pattern) :].strip()
if len(outputs) == cur_len:
break
try:
index = outputs.index(conv.sep)
except ValueError:
outputs += conv.sep
index = outputs.index(conv.sep)
outputs = outputs[:index].strip()
ans_id = shortuuid.uuid()
ans_file.write(
json.dumps(
{
"question_id": idx,
"prompt": cur_prompt,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name,
"metadata": {},
}
)
+ "\n"
)
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--mm-projector", type=str, default=None)
parser.add_argument("--vision-tower", type=str, default=None)
parser.add_argument("--conv-mode", type=str, default="simple")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
args = parser.parse_args()
eval_model(args)
|