File size: 7,276 Bytes
5885496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from typing import Callable, List, Optional, Tuple, Union
import json
import glob
import math
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers

from transformers import LlamaForCausalLM, CLIPVisionModel
from peft import (
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_int8_training,
    set_peft_model_state_dict,
)
from .llava.model.llava import LlavaLlamaForCausalLM
from .segment_anything import build_sam_vit_l, build_sam_vit_h

DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"

def find_all_linear_names(model):
    cls = torch.nn.Linear
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if 'lm_head' in lora_module_names: # needed for 16-bit
      lora_module_names.remove('lm_head')

    if 'mm_projector' in lora_module_names:
      lora_module_names.remove('mm_projector')

    return sorted(list(lora_module_names))

class LISA(nn.Module):
  def __init__(self,
    local_rank,
    seg_token_idx,
    tokenizer,
    llm_version,
    lora_r,
    precision,
    lora_target_modules=['q_proj', 'v_proj'],
    lora_alpha=16,
    lora_dropout=0.05,
    vision_tower='openai/clip-vit-large-patch14',
    mm_vision_select_layer=-2,
    freeze_lm=True,
    train_mask_decoder=True,
    out_dim=256,
  ):

    super().__init__()
    self.tokenizer = tokenizer
    self.image_token = tokenizer.cls_token_id
    self.precision = precision

    # LLaVA
    tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
    if precision == "bf16":
      self.lm = LlavaLlamaForCausalLM.from_pretrained(llm_version, torch_dtype=torch.bfloat16, cache_dir=None, low_cpu_mem_usage=True)
    else:
      self.lm = LlavaLlamaForCausalLM.from_pretrained(llm_version, torch_dtype=torch.float32, cache_dir=None, low_cpu_mem_usage=True)

    self.lm.enable_input_require_grads()  
    self.lm.gradient_checkpointing_enable() 
    self.lm.config.use_cache = False
    model_vision_dict = self.lm.get_model().initialize_vision_modules(vision_tower=vision_tower, mm_vision_select_layer=mm_vision_select_layer, precision=precision)
    vision_config = model_vision_dict['vision_config']
    vision_tower = self.lm.get_model().vision_tower[0]
    self.lm.model.config.eos_token_id = tokenizer.eos_token_id
    self.lm.model.config.bos_token_id = tokenizer.bos_token_id
    self.lm.model.config.pad_token_id = tokenizer.pad_token_id

    if vision_tower.device.type == 'meta':
        if precision == 'bf16':
          vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True).cuda(local_rank)
        else:
          vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float32, low_cpu_mem_usage=True).cuda(local_rank)
        self.lm.get_model().vision_tower[0] = vision_tower
    else:

        if precision == "bf16":
          vision_tower.to(device='cuda', dtype=torch.bfloat16)
        else:
          vision_tower.to(device='cuda', dtype=torch.float32)
        
    self.lm.config.tune_mm_mlp_adapter = False
    self.lm.config.freeze_mm_mlp_adapter = False
    self.lm.config.mm_use_im_start_end = True
    vision_config.use_im_start_end = True
    self.lm.config.sep_image_conv_front = False

    self.lm.initialize_vision_tokenizer(mm_use_im_start_end=True, tokenizer=tokenizer, num_new_tokens=num_new_tokens, device=local_rank, tune_mm_mlp_adapter=False)
    if freeze_lm:
      for n, param in self.lm.named_parameters():
          param.requires_grad = False

    self.llm_version = llm_version

    self.seg_token_idx = seg_token_idx
    self.lm.resize_token_embeddings(len(tokenizer))

    for n, p in self.lm.named_parameters():
      if any([x in n for x in ['lm_head', 'embed_tokens']]) and p.shape[0] == len(tokenizer):
        p.requires_grad = True

    # SAM
    self.visual_model = build_sam_vit_h(None)
    for param in self.visual_model.parameters():
      param.requires_grad = False
    if train_mask_decoder:
      self.visual_model.mask_decoder.train()
      for param in self.visual_model.mask_decoder.parameters():
        param.requires_grad = True
        
    # Projection layer
    in_dim = self.lm.config.hidden_size
    text_fc = [nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True), nn.Linear(in_dim, out_dim), nn.Dropout(0.0)]
    self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)])

  def get_visual_embs(self, pixel_values: torch.FloatTensor):
    image_embeddings = self.visual_model.image_encoder(pixel_values)
    return image_embeddings

  def evaluate(self, images_clip, images, input_ids, resize_list, original_size_list, max_new_tokens=32, tokenizer=None):
    
    outputs = self.lm.generate(images=images_clip, input_ids=input_ids, max_new_tokens=max_new_tokens, num_beams=1, output_hidden_states=True, return_dict_in_generate=True)
    output_hidden_states = outputs.hidden_states[-1]
    output_ids = outputs.sequences
    
    seg_token_mask = (output_ids[:, 1:] == self.seg_token_idx)

    last_embedding = None
    last_output_logit = None
    hidden_states = []

    assert len(self.text_hidden_fcs) == 1
    hidden_states.append(self.text_hidden_fcs[0](output_hidden_states))

    last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
    pred_embeddings = last_hidden_state[seg_token_mask]
    
    seg_token_counts = seg_token_mask.int().sum(-1) #[bs, ]
    seg_token_offset = seg_token_counts.cumsum(-1)
    seg_token_offset = torch.cat([torch.zeros(1).long().cuda(), seg_token_offset], dim=0)

    pred_embeddings_ = []
    for i in range(len(seg_token_offset)-1):
      start_i, end_i = seg_token_offset[i], seg_token_offset[i+1]
      pred_embeddings_.append(pred_embeddings[start_i: end_i])
    pred_embeddings = pred_embeddings_

    image_embeddings = self.get_visual_embs(images)

    multimask_output = False
    pred_masks = []
    for i in range(len(pred_embeddings)):
      sparse_embeddings, dense_embeddings = self.visual_model.prompt_encoder(
          points=None,
          boxes=None,
          masks=None,
          text_embeds=pred_embeddings[i].unsqueeze(1),
      )

      sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
      low_res_masks, iou_predictions = self.visual_model.mask_decoder(
          image_embeddings=image_embeddings[i].unsqueeze(0),
          image_pe=self.visual_model.prompt_encoder.get_dense_pe(),
          sparse_prompt_embeddings=sparse_embeddings,
          dense_prompt_embeddings=dense_embeddings,
          multimask_output=multimask_output,
      )
      
      pred_mask = self.visual_model.postprocess_masks(
          low_res_masks,
          input_size=resize_list[i],
          original_size=original_size_list[i],
      )
      pred_masks.append(pred_mask[:, 0])
      
    return output_ids, pred_masks