File size: 5,805 Bytes
5885496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import sys
import os
import cv2
import argparse
import torch
import transformers
import numpy as np
import torch.nn.functional as F

from transformers import AutoTokenizer, CLIPImageProcessor

from model.LISA import LISA
from utils.conversation import get_default_conv_template
from model.segment_anything.utils.transforms import ResizeLongestSide

def parse_args(args):
  parser = argparse.ArgumentParser(description='LISA chat')
  parser.add_argument('--version', default='xinlai/LISA-13B-llama2-v0')
  parser.add_argument('--vis_save_path', default='./vis_output', type=str)
  parser.add_argument('--precision', default='bf16', type=str, choices=['fp32', 'bf16'], help="precision for inference")
  parser.add_argument('--image-size', default=1024, type=int, help='image size')
  parser.add_argument('--model-max-length', default=512, type=int)
  parser.add_argument('--lora-r', default=-1, type=int)
  parser.add_argument('--vision-tower', default='openai/clip-vit-large-patch14', type=str)
  parser.add_argument('--local-rank', default=0, type=int, help='node rank')
  return parser.parse_args(args)


def preprocess(x, 
  pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1), 
  pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
  img_size=1024) -> torch.Tensor:
    """Normalize pixel values and pad to a square input."""
    # Normalize colors
    x = (x - pixel_mean) / pixel_std
    # Pad
    h, w = x.shape[-2:]
    padh = img_size - h
    padw = img_size - w
    x = F.pad(x, (0, padw, 0, padh))
    return x


def main(args):
  args = parse_args(args)
  os.makedirs(args.vis_save_path, exist_ok=True)

  # Create model
  tokenizer = transformers.AutoTokenizer.from_pretrained(
      args.version,
      cache_dir=None,
      model_max_length=args.model_max_length,
      padding_side="right",
      use_fast=False,
  )
  tokenizer.pad_token = tokenizer.unk_token
  num_added_tokens = tokenizer.add_tokens('[SEG]')
  ret_token_idx = tokenizer('[SEG]', add_special_tokens=False).input_ids
  args.seg_token_idx = ret_token_idx[0]
    
  model = LISA(
    args.local_rank, 
    args.seg_token_idx, 
    tokenizer, 
    args.version, 
    args.lora_r,
    args.precision,
  )

  weight = {}
  visual_model_weight = torch.load(os.path.join(args.version, "pytorch_model-visual_model.bin"))
  text_hidden_fcs_weight = torch.load(os.path.join(args.version, "pytorch_model-text_hidden_fcs.bin"))
  weight.update(visual_model_weight)
  weight.update(text_hidden_fcs_weight)
  missing_keys, unexpected_keys = model.load_state_dict(weight, strict=False)

  if args.precision == 'bf16':
    model = model.bfloat16().cuda()
  else:
    model = model.float().cuda()

  DEFAULT_IMAGE_TOKEN = "<image>"
  DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
  DEFAULT_IM_START_TOKEN = "<im_start>"
  DEFAULT_IM_END_TOKEN = "<im_end>"
  image_token_len = 256

  clip_image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower)
  transform = ResizeLongestSide(args.image_size)

  while True:

    conv = get_default_conv_template("vicuna").copy()
    conv.messages = []

    prompt = input("Please input your prompt: ")
    prompt = DEFAULT_IMAGE_TOKEN + " " + prompt
    replace_token = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
    replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
    prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)

    conv.append_message(conv.roles[0], prompt)
    conv.append_message(conv.roles[1], "")
    prompt = conv.get_prompt()

    image_path = input("Please input the image path: ")
    if not os.path.exists(image_path):
      print("File not found in {}".format(image_path))
      continue

    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    original_size_list = [image.shape[:2]]
    if args.precision == 'bf16':
      images_clip = clip_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].unsqueeze(0).cuda().bfloat16()
    else:
      images_clip = clip_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].unsqueeze(0).cuda().float()
    images = transform.apply_image(image)
    resize_list = [images.shape[:2]]
    if args.precision == 'bf16':
      images = preprocess(torch.from_numpy(images).permute(2,0,1).contiguous()).unsqueeze(0).cuda().bfloat16()
    else:
      images = preprocess(torch.from_numpy(images).permute(2,0,1).contiguous()).unsqueeze(0).cuda().float()

    input_ids = tokenizer(prompt).input_ids
    input_ids = torch.LongTensor(input_ids).unsqueeze(0).cuda()
    output_ids, pred_masks = model.evaluate(images_clip, images, input_ids, resize_list, original_size_list, max_new_tokens=512, tokenizer=tokenizer)
    text_output = tokenizer.decode(output_ids[0], skip_special_tokens=False)
    text_output = text_output.replace(DEFAULT_IMAGE_PATCH_TOKEN, "").replace("\n", "").replace("  ", "")

    print("text_output: ", text_output)
    for i, pred_mask in enumerate(pred_masks):

      if pred_mask.shape[0] == 0:
        continue

      pred_mask = pred_mask.detach().cpu().numpy()[0]
      pred_mask = (pred_mask > 0)

      save_path = "{}/{}_mask_{}.jpg".format(args.vis_save_path, image_path.split("/")[-1].split(".")[0], i)
      cv2.imwrite(save_path, pred_mask * 100)
      print("{} has been saved.".format(save_path))
      
      save_path = "{}/{}_masked_img_{}.jpg".format(args.vis_save_path, image_path.split("/")[-1].split(".")[0], i)
      save_img = image.copy()
      save_img[pred_mask] = (image * 0.5 + pred_mask[:,:,None].astype(np.uint8) * np.array([255,0,0]) * 0.5)[pred_mask]
      save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)
      cv2.imwrite(save_path, save_img)
      print("{} has been saved.".format(save_path))

if __name__ == '__main__':
  main(sys.argv[1:])