File size: 2,175 Bytes
d872151
 
 
 
 
7f58721
 
d872151
 
 
 
 
 
 
 
 
7f58721
d872151
 
7f58721
d872151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# LISA: Reasoning Segmentation Via Large Language Model

This is the official implementation of ***LISA (Large-language Instructed Segmentation Assistant)***. In this work, we propose a new segmentation task --- ***reasoning segmentation***. The task is designed to output a segmentation mask given a complex and implicit query text. We establish a benchmark comprising over one thousand image-instruction pairs, incorporating intricate reasoning and world knowledge for evaluation purposes. Finally, we present LISA: Large-language Instructed Segmentation Assistant, which inherits the language generation capabilities of the multi-modal Large Language Model (LLM) while also possessing the ability to produce segmentation masks.
For more details, please refer to:

<p align="center"> <img src="img/fig_teaser4_crop.png" width="100%"> </p>

**LISA: Reasoning Segmentation Via Large Language Model [[Paper]()]** <br />
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ&hl=zh-CN),
[Zhuotao Tian](https://scholar.google.com/citations?user=mEjhz-IAAAAJ&hl=en),
[Yukang Chen](https://scholar.google.com/citations?user=6p0ygKUAAAAJ&hl=en),
[Yanwei Li](https://scholar.google.com/citations?user=I-UCPPcAAAAJ&hl=zh-CN),
[Yuhui Yuan](https://scholar.google.com/citations?user=PzyvzksAAAAJ&hl=en),
[Shu Liu](https://scholar.google.com.hk/citations?user=BUEDUFkAAAAJ&hl=zh-CN)
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ&hl=en)<br />

<p align="center"> <img src="img/fig_overview_v6_crop.png" width="100%"> </p>

### Experimental results
<p align="center"> <img src="img/Table1.png" width="100%"> </p>


## Citation 
If you find this project useful in your research, please consider citing:

```
@article{reason-seg,
  title={LISA: Reasoning Segmentation Via Large Language Model},
  author={Xin Lai and Zhuotao Tian and Yukang Chen and Yanwei Li and Yuhui Yuan and Shu Liu and Jiaya Jia},
  journal={arXiv:},
  year={2023}
}

```


## Acknowledgement
-  This work is built upon the [LLaMA](https://github.com/facebookresearch/llama), [SAM](https://github.com/facebookresearch/segment-anything), and LLaVA(https://github.com/haotian-liu/LLaVA).