File size: 4,372 Bytes
4d90bff
d872151
2aba0a1
4d90bff
2aba0a1
4d90bff
69812b4
d872151
5885496
fa89df1
077a7c2
b027b42
a20a0a8
077a7c2
 
a20a0a8
077a7c2
5885496
077a7c2
b4fb030
d872151
 
 
 
 
4261796
d872151
 
69812b4
 
 
d872151
db69ef7
 
 
 
 
 
 
 
 
077a7c2
29d5f12
d872151
5885496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d872151
 
 
 
 
 
 
5413ce4
d872151
 
 
 
 
 
ac3ddc8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# LISA: Reasoning Segmentation via Large Language Model

<font size=10><div align='center'><b>LISA</b>: Large <b>L</b>anguage <b>I</b>nstructed <b>S</b>egmentation <b>A</b>ssistant</div></font>

<font size=10><div align='center' > <a href=https://arxiv.org/abs/2308.00692>Paper</a> | <a href=https://huggingface.co/xinlai/LISA-13B-llama2-v0>Model</a> | <a href="#Inference">Inference</a> | <a>Demo (Comming Soon)</a> </div></font>

<p align="center"> <img src="imgs/fig_overview.png" width="100%"> </p>

<p align="center"> <img src="imgs/teaser.png" width="100%"> </p>

## News
- [x] [2023.8.3] Inference code and the [LISA-13B-llama2-v0](https://huggingface.co/xinlai/LISA-13B-llama2-v0) model are released. Welcome to check out!
- [x] [2023.8.2] Paper is released and GitHub repo is created.

## TODO 
- [ ] Hugging Face Demo
- [ ] ReasonSeg Dataset Release
- [ ] Training Code Release

**LISA: Reasoning Segmentation Via Large Language Model [[Paper](https://arxiv.org/pdf/2308.00692.pdf)]** <br />
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ&hl=zh-CN),
[Zhuotao Tian](https://scholar.google.com/citations?user=mEjhz-IAAAAJ&hl=en),
[Yukang Chen](https://scholar.google.com/citations?user=6p0ygKUAAAAJ&hl=en),
[Yanwei Li](https://scholar.google.com/citations?user=I-UCPPcAAAAJ&hl=zh-CN),
[Yuhui Yuan](https://scholar.google.com/citations?user=PzyvzksAAAAJ&hl=en),
[Shu Liu](https://scholar.google.com.hk/citations?user=BUEDUFkAAAAJ&hl=zh-CN),
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ&hl=en)<br />

## Abstract
In this work, we propose a new segmentation task --- ***reasoning segmentation***. The task is designed to output a segmentation mask given a complex and implicit query text. We establish a benchmark comprising over one thousand image-instruction pairs, incorporating intricate reasoning and world knowledge for evaluation purposes. Finally, we present LISA: Large-language Instructed Segmentation Assistant, which inherits the language generation capabilities of the multi-modal Large Language Model (LLM) while also possessing the ability to produce segmentation masks.
For more details, please refer to:

## Highlights
**LISA** unlocks the new segmentation capabilities of multi-modal LLMs, and can handle cases involving: 
1. complex reasoning; 
2. world knowledge; 
3. explanatory answers; 
4. multi-turn conversation. 

**LISA** also demonstrates robust zero-shot capability when trained exclusively on reasoning-free datasets. In addition, fine-tuning the model with merely 239 reasoning segmentation image-instruction pairs results in further performance enhancement.

## Experimental results
<p align="center"> <img src="imgs/Table1.png" width="80%"> </p>

## Installation
```
pip install -r requirements.txt
```

## Inference
To chat with [LISA-13B-llama2-v0](https://huggingface.co/xinlai/LISA-13B-llama2-v0): (Note that the model currently does not support explanatory answers.)
```
CUDA_VISIBLE_DEVICES=0 python3 chat.py --version='xinlai/LISA-13B-llama2-v0'
```
To use `bfloat16` data type for inference:
```
CUDA_VISIBLE_DEVICES=0 python3 chat.py --version='xinlai/LISA-13B-llama2-v0' --precision='bf16'
```

After that, input the text prompt and then the image path. For example,
```
- Please input your prompt: Where can the driver see the car speed in this image? Please output segmentation mask.
- Please input the image path: imgs/example1.jpg

- Please input your prompt: Can you segment the food that tastes spicy and hot?
- Please input the image path: imgs/example2.jpg
```
The results should be like:
<p align="center"> <img src="imgs/example1.jpg" width="22%"> <img src="vis_output/example1_masked_img_0.jpg" width="22%"> <img src="imgs/example2.jpg" width="25%"> <img src="vis_output/example2_masked_img_0.jpg" width="25%"> </p>


## Citation 
If you find this project useful in your research, please consider citing:

```
@article{reason-seg,
  title={LISA: Reasoning Segmentation Via Large Language Model},
  author={Xin Lai and Zhuotao Tian and Yukang Chen and Yanwei Li and Yuhui Yuan and Shu Liu and Jiaya Jia},
  journal={arXiv:2308.00692},
  year={2023}
}

```

## Acknowledgement
-  This work is built upon the [LLaMA](https://github.com/facebookresearch/llama), [SAM](https://github.com/facebookresearch/segment-anything), and [LLaVA](https://github.com/haotian-liu/LLaVA).