File size: 5,174 Bytes
5885496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from llava.conversation import conv_templates, SeparatorStyle
from llava.utils import disable_torch_init
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
from llava.model import *
from llava.model.utils import KeywordsStoppingCriteria

from PIL import Image

import os
import requests
from PIL import Image
from io import BytesIO


DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


def load_image(image_file):
    if image_file.startswith('http') or image_file.startswith('https'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image


def eval_model(args):
    # Model
    disable_torch_init()
    model_name = os.path.expanduser(args.model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    if "mpt" in model_name.lower():
        model = LlavaMPTForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
    else:
        # model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
        model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='auto')#.cuda()
    image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)

    vision_tower = model.get_model().vision_tower[0]
    if vision_tower.device.type == 'meta':
        vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda()
        model.get_model().vision_tower[0] = vision_tower
    else:
        vision_tower.to(device='cuda', dtype=torch.float16)
    vision_config = vision_tower.config
    vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
    vision_config.use_im_start_end = mm_use_im_start_end
    if mm_use_im_start_end:
        vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
    image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2

    qs = args.query
    if mm_use_im_start_end:
        qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
    else:
        qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len

    if "v1" in model_name.lower():
        conv_mode = "llava_v1"
    elif "mpt" in model_name.lower():
        conv_mode = "mpt_multimodal"
    else:
        conv_mode = "multimodal"

    if args.conv_mode is not None and conv_mode != args.conv_mode:
        print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
    else:
        args.conv_mode = conv_mode

    conv = conv_templates[args.conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    inputs = tokenizer([prompt])

    image = load_image(args.image_file)
    image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]

    input_ids = torch.as_tensor(inputs.input_ids).cuda()

    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    with torch.inference_mode():
        output_ids = model.generate(input_ids, images=image_tensor.unsqueeze(0).half().cuda(), do_sample=True, temperature=0.2, max_new_tokens=1024, stopping_criteria=[stopping_criteria])

    input_token_len = input_ids.shape[1]
    n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
    if n_diff_input_output > 0:
        print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
    outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
    outputs = outputs.strip()
    if outputs.endswith(stop_str):
        outputs = outputs[:-len(stop_str)]
    outputs = outputs.strip()
    print(outputs)

    import pdb; pdb.set_trace()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
    parser.add_argument("--image-file", type=str, required=True)
    parser.add_argument("--query", type=str, required=True)
    parser.add_argument("--conv-mode", type=str, default=None)
    args = parser.parse_args()

    eval_model(args)