import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_name = "deepseek-ai/deepseek-coder-1.3b-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_code(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=300, pad_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0], skip_special_tokens=True) examples = [ "Create a Python function to reverse a string.", "Write a JavaScript function that returns the factorial of a number.", "Build a simple HTML page with a form and a submit button.", "Create a Python script to fetch weather data using an API." ] with gr.Blocks() as demo: gr.Markdown("## 💻 Generate Code with DeepSeek") prompt = gr.Textbox(label="Enter your prompt", lines=4, scale=2) output = gr.Textbox(label="Generated code", lines=10) gen_button = gr.Button("Generate") gen_button.click(fn=generate_code, inputs=prompt, outputs=output) gr.Examples(examples=examples, inputs=prompt) demo.launch()