File size: 5,482 Bytes
5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c 2d05d8a 5c0db7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
from transformers import pipeline
from typing import Dict, List, Union
import logging
from pydantic import BaseModel, Field
# Logging configuration
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_LENGTH = 512
TOP_K = 16
MODELS = {
"bert": "albertmartinez/bert-sdg-classification",
"bert-multilingual": "albertmartinez/bert-multilingual-sdg-classification",
"distilbert-multilingual": "albertmartinez/distilbert-multilingual-sdg-classification",
"xlm-roberta-large": "albertmartinez/xlm-roberta-large-sdg-classification"
}
class ClassificationResult(BaseModel):
"""Model for classification results."""
label: str = Field(..., description="Classification label")
score: float = Field(..., description="Classification score")
def load_models() -> Dict[str, pipeline]:
"""Load all required models."""
try:
return {
name: pipeline("text-classification", model=model_path)
for name, model_path in MODELS.items()
}
except Exception as e:
logger.error(f"Error loading models: {str(e)}")
raise
# Load models
models = load_models()
def validate_input(text: str) -> bool:
"""Validate input text."""
if not text or not isinstance(text, str):
return False
if len(text.strip()) == 0:
return False
return True
def classify_text(text: str, model: pipeline) -> Dict[str, float]:
"""
Classify text using the specified model.
Args:
text: Text to classify
model: Classification model
Returns:
Dictionary with labels and their scores
"""
if not validate_input(text):
raise ValueError("Invalid text input")
try:
result = model(text, top_k=TOP_K, truncation=True, max_length=MAX_LENGTH)
return {p["label"]: p["score"] for p in result}
except Exception as e:
logger.error(f"Error in classification: {str(e)}")
raise
def classify_all(text: str) -> List[Dict[str, float]]:
"""
Classify text using all available models.
Args:
text: Text to classify
Returns:
List of dictionaries with predictions from each model
"""
if not validate_input(text):
raise ValueError("Invalid text input")
try:
return [
classify_text(text, model)
for model in models.values()
]
except Exception as e:
logger.error(f"Error in multiple classification: {str(e)}")
raise
def create_interface(model_name: str, model: pipeline) -> gr.Interface:
"""Create a Gradio interface for a specific model."""
return gr.Interface(
fn=lambda text: classify_text(text, model),
inputs=gr.Textbox(
lines=2,
label="Text",
placeholder="Enter text here..."
),
outputs=gr.Label(label="Top SDG Predicted"),
title=f"{model_name.upper()} SDG classification",
description="Enter text and see the classification results!",
examples=[["To respond to these new challenges PSV has been encouraged to develop strong links with business and enterprises, to cover remote areas and to cater for less affluent students. It analyses the impact of the dual sector universities in Australia, short cycle higher education in Scotland, three sub-sectors of Norway's tertiary education and the emerging non-university higher education in Italy, as well as the vocational education and training in Spain. It discusses the issues of transition, participation and collaboration of different types of post-secondary education and analysis the impact of policy changes."]],
flagging_mode="never",
api_name=f"classify_{model_name}"
)
# Create main interface
ifaceall = gr.Interface(
fn=classify_all,
inputs=gr.Textbox(
lines=2,
label="Text",
placeholder="Enter text here..."
),
outputs=[
gr.Label(label="bert"),
gr.Label(label="bert-multilingual"),
gr.Label(label="distilbert-multilingual"),
gr.Label(label="xlm-roberta-large")
],
title="SDG text classification",
description="Enter text and see the classification results!",
examples=[["To respond to these new challenges PSV has been encouraged to develop strong links with business and enterprises, to cover remote areas and to cater for less affluent students. It analyses the impact of the dual sector universities in Australia, short cycle higher education in Scotland, three sub-sectors of Norway's tertiary education and the emerging non-university higher education in Italy, as well as the vocational education and training in Spain. It discusses the issues of transition, participation and collaboration of different types of post-secondary education and analysis the impact of policy changes."]],
flagging_mode="never",
api_name="classify_all_models"
)
# Create individual interfaces
interfaces = [ifaceall] + [
create_interface(name, model)
for name, model in models.items()
]
# Create main interface with tabs
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.TabbedInterface(
interface_list=interfaces,
tab_names=["ALL"] + list(MODELS.keys()),
title="Sustainable Development Goals (SDG) Text Classifier App"
)
if __name__ == "__main__":
logger.info(f"Gradio version: {gr.__version__}")
demo.launch()
|