import argparse import datetime import hashlib import json import os import time import gradio as gr import requests from constants import LOGDIR from conversation import (default_conversation, conv_templates, SeparatorStyle) from utils import (build_logger, server_error_msg) logger = build_logger("gradio_web_server", "gradio_web_server.log") from model_worker import ModelWorker no_change_btn = gr.Button() enable_btn = gr.Button(interactive=True) disable_btn = gr.Button(interactive=False) def get_conv_log_filename(): t = datetime.datetime.now() name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") return name get_window_url_params = """ function() { const params = new URLSearchParams(window.location.search); url_params = Object.fromEntries(params); console.log(url_params); return url_params; } """ def load_demo(url_params, request: gr.Request): logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") global worker dropdown_update = gr.Dropdown(visible=True) worker = ModelWorker(model_path, None, model_name, True, lora_path) state = default_conversation.copy() return state, dropdown_update def vote_last_response(state, vote_type, model_selector, request: gr.Request): with open(get_conv_log_filename(), "a") as fout: data = { "tstamp": round(time.time(), 4), "type": vote_type, "model": model_selector, "state": state.dict(), "ip": request.client.host, } fout.write(json.dumps(data) + "\n") def upvote_last_response(state, model_selector, request: gr.Request): logger.info(f"upvote. ip: {request.client.host}") vote_last_response(state, "upvote", model_selector, request) return ("",) + (disable_btn,) * 3 def downvote_last_response(state, model_selector, request: gr.Request): logger.info(f"downvote. ip: {request.client.host}") vote_last_response(state, "downvote", model_selector, request) return ("",) + (disable_btn,) * 3 def flag_last_response(state, model_selector, request: gr.Request): logger.info(f"flag. ip: {request.client.host}") vote_last_response(state, "flag", model_selector, request) return ("",) + (disable_btn,) * 3 def regenerate(state, image_process_mode, request: gr.Request): logger.info(f"regenerate. ip: {request.client.host}") state.messages[-1][-1] = None prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) state.skip_next = False return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 def clear_history(request: gr.Request): logger.info(f"clear_history. ip: {request.client.host}") state = default_conversation.copy() return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 def add_text(state, text, image, image_process_mode, request: gr.Request): logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") if len(text) <= 0 and image is None: state.skip_next = True return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 text = text[:1536] # Hard cut-off if image is not None: text = text[:1200] # Hard cut-off for images if '' not in text: # text = '' + text text = text + '\n' text = (text, image, image_process_mode) state = default_conversation.copy() state.append_message(state.roles[0], text) state.append_message(state.roles[1], None) state.skip_next = False return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request): logger.info(f"http_bot. ip: {request.client.host}") start_tstamp = time.time() model_name = model_selector if state.skip_next: # This generate call is skipped due to invalid inputs yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 return if len(state.messages) == state.offset + 2: # First round of conversation if "llava" in model_name.lower(): if 'llama-2' in model_name.lower(): template_name = "llava_llama_2" elif "mistral" in model_name.lower() or "mixtral" in model_name.lower(): if 'orca' in model_name.lower(): template_name = "mistral_orca" elif 'hermes' in model_name.lower(): template_name = "chatml_direct" else: template_name = "mistral_instruct" elif 'llava-v1.6-34b' in model_name.lower(): template_name = "chatml_direct" elif "v1" in model_name.lower(): if 'mmtag' in model_name.lower(): template_name = "v1_mmtag" elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): template_name = "v1_mmtag" else: template_name = "llava_v1" elif "mpt" in model_name.lower(): template_name = "mpt" else: if 'mmtag' in model_name.lower(): template_name = "v0_mmtag" elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): template_name = "v0_mmtag" else: template_name = "llava_v0" elif "mpt" in model_name: template_name = "mpt_text" elif "llama-2" in model_name: template_name = "llama_2" else: template_name = "vicuna_v1" new_state = conv_templates[template_name].copy() new_state.append_message(new_state.roles[0], state.messages[-2][1]) new_state.append_message(new_state.roles[1], None) state = new_state # Construct prompt prompt = state.get_prompt() all_images = state.get_images(return_pil=True) all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] for image, hash in zip(all_images, all_image_hash): t = datetime.datetime.now() filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg") if not os.path.isfile(filename): os.makedirs(os.path.dirname(filename), exist_ok=True) image.save(filename) # Make requests pload = { "model": model_name, "prompt": prompt, "temperature": float(temperature), "top_p": float(top_p), "max_new_tokens": min(int(max_new_tokens), 1536), "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2, "images": f'List of {len(state.get_images())} images: {all_image_hash}', } logger.info(f"==== request ====\n{pload}") pload['images'] = state.get_images() state.messages[-1][-1] = "▌" yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 try: # Stream output for chunk in worker.generate_stream_gate(pload): if chunk: data = json.loads(chunk.decode()) if data["error_code"] == 0: output = data["text"][len(prompt):].strip() state.messages[-1][-1] = output + "▌" yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 else: output = data["text"] + f" (error_code: {data['error_code']})" state.messages[-1][-1] = output yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) return time.sleep(0.03) except requests.exceptions.RequestException as e: state.messages[-1][-1] = server_error_msg yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) return state.messages[-1][-1] = state.messages[-1][-1][:-1] yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 finish_tstamp = time.time() logger.info(f"{output}") with open(get_conv_log_filename(), "a") as fout: data = { "tstamp": round(finish_tstamp, 4), "type": "chat", "model": model_name, "start": round(start_tstamp, 4), "finish": round(finish_tstamp, 4), "state": state.dict(), "images": all_image_hash, "ip": request.client.host, } fout.write(json.dumps(data) + "\n") title_markdown = (""" # Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [[Project Page](https://XXXXX)] [[Code](https://github.com/AlaaLab/Dr-LLaVA)] | 📚 [[Dr-LLaVA](https://arxiv.org/abs/2405.19567)]] """) tos_markdown = (""" This demo is intended for research purposes only and not for medical use. The model has not been fine-tuned on non-medical images. """) learn_more_markdown = (""" ### License The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. """) block_css = """ #buttons button { min-width: min(120px,100%); } """ def build_demo(cur_dir=None, concurrency_count=10): textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False) with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo: state = gr.State() gr.Markdown(title_markdown) with gr.Row(): with gr.Column(scale=2): # add a description gr.Markdown("""Shenghuan Sun, Gregory Goldgof, Alex Schubert, Zhiqing Sun, Atul Butte, Ahmed Alaa Demo Creator: [David W. Day](https://github.com/daviddaytw) This is the demo for Dr-LLaVA: a conversational vision-language model for diagnosing blood cancer using Bone Marrow Aspirate images. **Instructions:** - Drop a single image from a bone marrow aspirate whole slide image taken at 40x. """) # Replace 'path_to_image' with the path to your image file gr.Image(value="https://davidday.tw/wp-content/uploads/2024/08/Dr-LLa-VA-Fig-1.jpg", width=600, interactive=False, type="pil") with gr.Column(scale=3): with gr.Row(elem_id="model_selector_row"): model_selector = gr.Dropdown( choices=models, value=models[0] if len(models) > 0 else "", interactive=True, show_label=False, container=False) imagebox = gr.Image(type="pil") image_process_mode = gr.Radio( ["Crop", "Resize", "Pad", "Default"], value="Default", label="Preprocess for non-square image", visible=False) if cur_dir is None: cur_dir = os.path.dirname(os.path.abspath(__file__)) gr.Examples(examples=[ [f"{cur_dir}/examples/example1.jpeg", "Can you assess if these pathology images are suitable for identifying cancer upon inspection?"], [f"{cur_dir}/examples/example2.jpeg", "Are you able to recognize the probable illness in the image patch?"], ], inputs=[imagebox, textbox]) with gr.Accordion("Parameters", open=False) as parameter_row: temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) with gr.Column(scale=6): chatbot = gr.Chatbot( elem_id="chatbot", label="LLaVA Chatbot", height=470, layout="panel", ) with gr.Row(): with gr.Column(scale=8): textbox.render() with gr.Column(scale=1, min_width=50): submit_btn = gr.Button(value="Send", variant="primary") with gr.Row(elem_id="buttons") as button_row: upvote_btn = gr.Button(value="👍 Upvote", interactive=False) downvote_btn = gr.Button(value="👎 Downvote", interactive=False) flag_btn = gr.Button(value="⚠ī¸ Flag", interactive=False) #stop_btn = gr.Button(value="⏚ī¸ Stop Generation", interactive=False) regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) clear_btn = gr.Button(value="🗑ī¸ Clear", interactive=False) gr.Markdown(tos_markdown) gr.Markdown(learn_more_markdown) url_params = gr.JSON(visible=False) # Register listeners btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] upvote_btn.click( upvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn] ) downvote_btn.click( downvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn] ) flag_btn.click( flag_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn] ) regenerate_btn.click( regenerate, [state, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list ).then( http_bot, [state, model_selector, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, concurrency_limit=concurrency_count ) clear_btn.click( clear_history, None, [state, chatbot, textbox, imagebox] + btn_list, queue=False ) textbox.submit( add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list, queue=False ).then( http_bot, [state, model_selector, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, concurrency_limit=concurrency_count ) submit_btn.click( add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list ).then( http_bot, [state, model_selector, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, concurrency_limit=concurrency_count ) demo.load( load_demo, [url_params], [state, model_selector], js=get_window_url_params ) return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int) parser.add_argument("--concurrency-count", type=int, default=16) parser.add_argument("--share", action="store_true") args = parser.parse_args() logger.info(f"args: {args}") models = ['llava-rlhf-13b-v1.5-336'] model_path = 'daviddaytw/Dr-LLaVA-sft' model_name = 'llava-rlhf-13b-v1.5-336' lora_path = 'daviddaytw/Dr-LLaVA-lora-adapter' demo = build_demo(concurrency_count=args.concurrency_count) demo.queue( api_open=False ).launch( server_name=args.host, server_port=args.port, share=args.share )