Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +32 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
|
8 |
+
shanty=os.environ.get('SHANTY')
|
9 |
+
def compute_cosine_similarity(text1, text2):
|
10 |
+
# Initialize the TfidfVectorizer
|
11 |
+
tfidf_vectorizer = TfidfVectorizer()
|
12 |
+
|
13 |
+
# Fit and transform the texts
|
14 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2])
|
15 |
+
|
16 |
+
# Compute the cosine similarity
|
17 |
+
similarity_score = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
|
18 |
+
|
19 |
+
return similarity_score[0][0]
|
20 |
+
|
21 |
+
def text_similarity(text):
|
22 |
+
score= compute_cosine_similarity(shanty,text)
|
23 |
+
return score
|
24 |
+
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
gr.Markdown("# Guess the lyrics of the sea shanty! \n ## Each two seconds of video represents a line")
|
27 |
+
video=gr.PlayableVideo("final_video.mp4")
|
28 |
+
inp=gr.Textbox(placeholder="Enter lyrics of sea shanty!")
|
29 |
+
|
30 |
+
out=gr.Textbox()
|
31 |
+
inp.change(text_similarity,inp,out)
|
32 |
+
demo.launch(show_api=False,share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
sklearn
|