Spaces:
Running
Running
| from typing import Union | |
| import PIL | |
| import PIL.Image | |
| import torch | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| from torch import nn | |
| from torchvision.transforms.v2 import ( | |
| Compose, | |
| InterpolationMode, | |
| Normalize, | |
| Resize, | |
| ToDtype, | |
| ToImage, | |
| ) | |
| from transformers.utils import is_flash_attn_2_available | |
| try: | |
| if is_flash_attn_2_available(): | |
| from flash_attn.modules.mha import FlashSelfAttention | |
| else: | |
| FlashSelfAttention = None | |
| except ImportError: | |
| FlashSelfAttention = None | |
| class Attention(nn.Module): | |
| def __init__(self, dim, num_heads=16, use_flash_attn=False): | |
| super().__init__() | |
| assert dim % num_heads == 0, "dim should be divisible by num_heads" | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.qkv = nn.Linear(dim, dim * 3) | |
| self.proj = nn.Linear(dim, dim) | |
| if use_flash_attn and FlashSelfAttention is not None: | |
| self.flash_attn = FlashSelfAttention() | |
| else: | |
| self.flash_attn = None | |
| torch.nn.init.kaiming_normal_( | |
| self.qkv.weight, mode="fan_in", nonlinearity="relu" | |
| ) | |
| torch.nn.init.kaiming_normal_( | |
| self.proj.weight, mode="fan_in", nonlinearity="relu" | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| if self.flash_attn is not None: | |
| qkv = self.qkv(x) | |
| qkv = rearrange( | |
| qkv, "... (three h d) -> ... three h d", three=3, h=self.num_heads | |
| ) | |
| attn_output = self.flash_attn(qkv) | |
| output = rearrange(attn_output, "... h d -> ... (h d)") | |
| output = self.proj(output) | |
| return output | |
| else: | |
| B, N, C = x.shape | |
| qkv = ( | |
| self.qkv(x) | |
| .reshape(B, N, 3, self.num_heads, self.head_dim) | |
| .permute(2, 0, 3, 1, 4) | |
| ) | |
| q, k, v = qkv.unbind(0) | |
| x = F.scaled_dot_product_attention(q, k, v) | |
| x = x.transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| return x | |
| class VitBlock(nn.Module): | |
| def __init__(self, embed_dim, use_flash_attn=False): | |
| super().__init__() | |
| self.attn = Attention(embed_dim, use_flash_attn=use_flash_attn) | |
| self.mlp = MLP(embed_dim, 4304) | |
| self.norm1 = nn.LayerNorm(embed_dim) | |
| self.norm2 = nn.LayerNorm(embed_dim) | |
| def forward(self, x): | |
| x = x + self.attn(self.norm1(x)) | |
| x = x + self.mlp(self.norm2(x)) | |
| return x | |
| class VisionTransformer(nn.Module): | |
| def __init__(self, use_flash_attn=False): | |
| super().__init__() | |
| embed_len = 729 | |
| embed_dim = 1152 | |
| self.patch_embed = LinearPatchEmbedding() | |
| self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02) | |
| self.blocks = nn.Sequential( | |
| *[VitBlock(embed_dim, use_flash_attn=use_flash_attn) for _ in range(27)] | |
| ) | |
| self.norm = nn.LayerNorm(embed_dim) | |
| def forward(self, x): | |
| x = self.patch_embed(x) | |
| x = x + self.pos_embed | |
| for block in self.blocks: | |
| x = block(x) | |
| return self.norm(x) | |
| class EncoderWrapper(nn.Module): | |
| def __init__(self, use_flash_attn=False): | |
| super().__init__() | |
| self.model = nn.ModuleDict({"visual": VisionTransformer(use_flash_attn)}) | |
| def forward(self, x): | |
| return self.model["visual"](x) | |
| class LinearPatchEmbedding(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.linear = nn.Linear(588, 1152) | |
| def forward(self, x): | |
| b, c, hp1, wp2 = x.shape | |
| p1, p2 = 14, 14 | |
| h, w = hp1 // p1, wp2 // p2 | |
| x = x.reshape(b, c, h, p1, w, p2) | |
| x = x.permute(0, 2, 4, 1, 3, 5) | |
| x = x.reshape(b, h * w, c * p1 * p2) | |
| return self.linear(x) | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, | |
| in_features: int, | |
| hidden_features: int = None, | |
| out_features: int = None, | |
| ) -> None: | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = nn.GELU(approximate="tanh") | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| torch.nn.init.kaiming_normal_( | |
| self.fc1.weight, mode="fan_in", nonlinearity="relu" | |
| ) | |
| torch.nn.init.kaiming_normal_( | |
| self.fc2.weight, mode="fan_in", nonlinearity="relu" | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.fc2(x) | |
| return x | |
| class VisionProjection(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| image_embedding_dim = 1152 | |
| model_dim = 2048 | |
| hidden_dim = model_dim * 4 | |
| self.mlp = MLP(image_embedding_dim * 2, hidden_dim, model_dim) | |
| def device(self): | |
| return self.mlp.fc1.weight.device | |
| def forward(self, x): | |
| return self.mlp(x) | |
| def create_patches(image, patch_size=(378, 378)): | |
| assert image.dim() == 3, "Image must be in CHW format" | |
| _, height, width = image.shape # Channels, Height, Width | |
| patch_height, patch_width = patch_size | |
| if height == patch_height and width == patch_width: | |
| return [] | |
| # Iterate over the image and create patches | |
| patches = [] | |
| for i in range(0, height, patch_height): | |
| row_patches = [] | |
| for j in range(0, width, patch_width): | |
| patch = image[:, i : i + patch_height, j : j + patch_width] | |
| row_patches.append(patch) | |
| patches.append(torch.stack(row_patches)) | |
| return patches | |
| class VisionEncoder(nn.Module): | |
| def __init__(self, use_flash_attn=False): | |
| super().__init__() | |
| self.encoder = EncoderWrapper(use_flash_attn) | |
| self.projection = VisionProjection() | |
| self.supported_sizes = [(378, 378), (378, 756), (756, 378), (756, 756)] | |
| def device(self): | |
| return self.projection.mlp.fc1.weight.device | |
| def dtype(self): | |
| return self.projection.mlp.fc1.weight.dtype | |
| def preprocess(self, image: PIL.Image.Image): | |
| width, height = image.size | |
| max_dim = max(width, height) | |
| if max_dim < 512: | |
| im_size = (378, 378) | |
| else: | |
| aspect_ratio = width / height | |
| im_size = min( | |
| self.supported_sizes, | |
| key=lambda size: ( | |
| abs((size[1] / size[0]) - aspect_ratio), | |
| abs(size[0] - width) + abs(size[1] - height), | |
| ), | |
| ) | |
| return Compose( | |
| [ | |
| Resize(size=im_size, interpolation=InterpolationMode.BICUBIC), | |
| ToImage(), | |
| ToDtype(torch.float16, scale=True), | |
| Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
| ] | |
| )(image) | |
| def forward( | |
| self, images: Union[PIL.Image.Image, list[PIL.Image.Image], torch.Tensor] | |
| ) -> torch.Tensor: | |
| im_list = None | |
| if isinstance(images, torch.Tensor): | |
| # Input must have dimensions (B, C, H, W) | |
| assert ( | |
| len(images.shape) == 4 | |
| ), "Tensor input must have dimensions (B, C, H, W)" | |
| im_list = list(images) | |
| elif isinstance(images, PIL.Image.Image): | |
| im_list = [images] | |
| elif isinstance(images, list): | |
| im_list = images | |
| else: | |
| raise ValueError( | |
| "Input must be a PIL image, list of PIL images, or a tensor" | |
| ) | |
| # Preprocess unless the images are already tensors (indicating that | |
| # they have already been preprocessed) | |
| if not isinstance(im_list[0], torch.Tensor): | |
| im_list = [self.preprocess(im.convert("RGB")) for im in im_list] | |
| patches = [create_patches(im) for im in im_list] | |
| flat_patches = [patch for image_patches in patches for patch in image_patches] | |
| # Images may be variable size, and need to be resized to a common size after | |
| # creating patches. | |
| resized_images = [ | |
| F.interpolate(im.unsqueeze(0), size=(378, 378), mode="bilinear") | |
| for im in im_list | |
| ] | |
| combined_images = torch.cat([*resized_images, *flat_patches], dim=0) | |
| combined_images = combined_images.to(self.device, dtype=self.dtype) | |
| combined_features = self.encoder(combined_images) | |
| full_img_features = combined_features[: len(im_list)] | |
| patch_features = ( | |
| combined_features[len(im_list) :].transpose(1, 2).view(-1, 1152, 27, 27) | |
| ) | |
| # Reshape patch features back to their original structure | |
| reshaped_patch_features = [] | |
| patch_idx = 0 | |
| for i, patch_set in enumerate(patches): | |
| if len(patch_set) == 0: | |
| reshaped_patch_features.append( | |
| full_img_features[i].transpose(0, 1).view(1152, 27, 27) | |
| ) | |
| else: | |
| sample_features = [] | |
| for row_patches in patch_set: | |
| row_len = len(row_patches) | |
| row_features = patch_features[ | |
| patch_idx : patch_idx + row_len | |
| ] # row_len, T, C | |
| row_features = torch.cat( | |
| list(row_features), dim=2 | |
| ) # T, C * row_len | |
| patch_idx += row_len | |
| sample_features.append(row_features) | |
| sample_features = torch.cat(sample_features, dim=1) | |
| sample_features = F.adaptive_avg_pool2d( | |
| sample_features, output_size=(27, 27) | |
| ) | |
| reshaped_patch_features.append(sample_features) | |
| reshaped_patch_features = ( | |
| torch.stack(reshaped_patch_features).view(-1, 1152, 729).transpose(1, 2) | |
| ) | |
| final_features = torch.cat([full_img_features, reshaped_patch_features], dim=2) | |
| return self.projection(final_features) | |