Spaces:
Running
Running
| # coding=utf-8 | |
| # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch Phi model.""" | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from packaging import version | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from transformers.activations import ACT2FN | |
| from transformers.cache_utils import Cache, DynamicCache, StaticCache | |
| from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPast, | |
| CausalLMOutputWithPast, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import ( | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| get_torch_version, | |
| is_flash_attn_2_available, | |
| is_flash_attn_greater_or_equal_2_10, | |
| is_torchdynamo_compiling, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from .configuration_moondream import PhiConfig | |
| if is_flash_attn_2_available(): | |
| from transformers.modeling_flash_attention_utils import _flash_attention_forward | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "PhiConfig" | |
| # Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position | |
| def _prepare_4d_causal_attention_mask_with_cache_position( | |
| attention_mask: torch.Tensor, | |
| sequence_length: int, | |
| target_length: int, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| min_dtype: float, | |
| cache_position: torch.Tensor, | |
| batch_size: int, | |
| ): | |
| """ | |
| Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
| `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | |
| Args: | |
| attention_mask (`torch.Tensor`): | |
| A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | |
| sequence_length (`int`): | |
| The sequence length being processed. | |
| target_length (`int`): | |
| The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | |
| dtype (`torch.dtype`): | |
| The dtype to use for the 4D attention mask. | |
| device (`torch.device`): | |
| The device to plcae the 4D attention mask on. | |
| min_dtype (`float`): | |
| The minimum value representable with the dtype `dtype`. | |
| cache_position (`torch.Tensor`): | |
| Indices depicting the position of the input sequence tokens in the sequence. | |
| batch_size (`torch.Tensor`): | |
| Batch size. | |
| """ | |
| if attention_mask is not None and attention_mask.dim() == 4: | |
| # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. | |
| causal_mask = attention_mask | |
| else: | |
| causal_mask = torch.full( | |
| (sequence_length, target_length), | |
| fill_value=min_dtype, | |
| dtype=dtype, | |
| device=device, | |
| ) | |
| if sequence_length != 1: | |
| causal_mask = torch.triu(causal_mask, diagonal=1) | |
| causal_mask *= torch.arange( | |
| target_length, device=device | |
| ) > cache_position.reshape(-1, 1) | |
| causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | |
| if attention_mask is not None: | |
| causal_mask = ( | |
| causal_mask.clone() | |
| ) # copy to contiguous memory for in-place edit | |
| mask_length = attention_mask.shape[-1] | |
| padding_mask = ( | |
| causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
| ) | |
| padding_mask = padding_mask == 0 | |
| causal_mask[:, :, :, :mask_length] = causal_mask[ | |
| :, :, :, :mask_length | |
| ].masked_fill(padding_mask, min_dtype) | |
| return causal_mask | |
| # Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Phi | |
| class PhiRotaryEmbedding(nn.Module): | |
| def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
| super().__init__() | |
| self.dim = dim | |
| self.max_position_embeddings = max_position_embeddings | |
| self.base = base | |
| inv_freq = 1.0 / ( | |
| self.base | |
| ** ( | |
| torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) | |
| / self.dim | |
| ) | |
| ) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| # Build here to make `torch.jit.trace` work. | |
| self._set_cos_sin_cache( | |
| seq_len=max_position_embeddings, | |
| device=self.inv_freq.device, | |
| dtype=torch.get_default_dtype(), | |
| ) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| t = torch.arange( | |
| self.max_seq_len_cached, device=device, dtype=torch.int64 | |
| ).type_as(self.inv_freq) | |
| freqs = torch.outer(t, self.inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
| self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
| def forward(self, x, seq_len=None): | |
| # x: [bs, num_attention_heads, seq_len, head_size] | |
| if seq_len > self.max_seq_len_cached: | |
| self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
| return ( | |
| self.cos_cached[:seq_len].to(dtype=x.dtype), | |
| self.sin_cached[:seq_len].to(dtype=x.dtype), | |
| ) | |
| # Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->Phi | |
| class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding): | |
| """PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | |
| def __init__( | |
| self, | |
| dim, | |
| max_position_embeddings=2048, | |
| base=10000, | |
| device=None, | |
| scaling_factor=1.0, | |
| ): | |
| self.scaling_factor = scaling_factor | |
| super().__init__(dim, max_position_embeddings, base, device) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| t = torch.arange( | |
| self.max_seq_len_cached, device=device, dtype=torch.int64 | |
| ).type_as(self.inv_freq) | |
| t = t / self.scaling_factor | |
| freqs = torch.outer(t, self.inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
| self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
| # Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->Phi | |
| class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding): | |
| """PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | |
| def __init__( | |
| self, | |
| dim, | |
| max_position_embeddings=2048, | |
| base=10000, | |
| device=None, | |
| scaling_factor=1.0, | |
| ): | |
| self.scaling_factor = scaling_factor | |
| super().__init__(dim, max_position_embeddings, base, device) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| if seq_len > self.max_position_embeddings: | |
| base = self.base * ( | |
| (self.scaling_factor * seq_len / self.max_position_embeddings) | |
| - (self.scaling_factor - 1) | |
| ) ** (self.dim / (self.dim - 2)) | |
| inv_freq = 1.0 / ( | |
| base | |
| ** ( | |
| torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) | |
| / self.dim | |
| ) | |
| ) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| t = torch.arange( | |
| self.max_seq_len_cached, device=device, dtype=torch.int64 | |
| ).type_as(self.inv_freq) | |
| freqs = torch.outer(t, self.inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
| self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
| # Copied from transformers.models.llama.modeling_llama.rotate_half | |
| def rotate_half(x): | |
| """Rotates half the hidden dims of the input.""" | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| # Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb | |
| def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
| """Applies Rotary Position Embedding to the query and key tensors. | |
| Args: | |
| q (`torch.Tensor`): The query tensor. | |
| k (`torch.Tensor`): The key tensor. | |
| cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
| sin (`torch.Tensor`): The sine part of the rotary embedding. | |
| position_ids (`torch.Tensor`): | |
| The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
| used to pass offsetted position ids when working with a KV-cache. | |
| unsqueeze_dim (`int`, *optional*, defaults to 1): | |
| The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
| sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
| that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
| k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
| cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
| the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
| Returns: | |
| `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
| """ | |
| cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
| sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
| q_embed = (q * cos) + (rotate_half(q) * sin) | |
| k_embed = (k * cos) + (rotate_half(k) * sin) | |
| return q_embed, k_embed | |
| # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi | |
| class PhiMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.activation_fn = ACT2FN[config.hidden_act] | |
| self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
| self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.fc1(hidden_states) | |
| hidden_states = self.activation_fn(hidden_states) | |
| hidden_states = self.fc2(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi | |
| def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| """ | |
| This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
| num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
| """ | |
| batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
| if n_rep == 1: | |
| return hidden_states | |
| hidden_states = hidden_states[:, :, None, :, :].expand( | |
| batch, num_key_value_heads, n_rep, slen, head_dim | |
| ) | |
| return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
| class PhiAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None): | |
| super().__init__() | |
| self.config = config | |
| self.layer_idx = layer_idx | |
| if layer_idx is None: | |
| logger.warning_once( | |
| f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | |
| "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | |
| "when creating this class." | |
| ) | |
| self.attention_dropout = config.attention_dropout | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.rope_theta = config.rope_theta | |
| self.partial_rotary_factor = config.partial_rotary_factor | |
| self.is_causal = True | |
| if (self.head_dim * self.num_heads) != self.hidden_size: | |
| raise ValueError( | |
| f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
| f" and `num_heads`: {self.num_heads})." | |
| ) | |
| self.Wqkv = nn.Linear( | |
| self.hidden_size, 3 * self.num_heads * self.head_dim, bias=True | |
| ) | |
| self.out_proj = nn.Linear( | |
| self.num_heads * self.head_dim, self.hidden_size, bias=True | |
| ) | |
| self._init_rope() | |
| def _init_rope(self): | |
| if self.config.rope_scaling is None: | |
| self.rotary_emb = PhiRotaryEmbedding( | |
| int(self.partial_rotary_factor * self.head_dim), | |
| max_position_embeddings=self.max_position_embeddings, | |
| base=self.rope_theta, | |
| ) | |
| else: | |
| scaling_type = self.config.rope_scaling["type"] | |
| scaling_factor = self.config.rope_scaling["factor"] | |
| if scaling_type == "linear": | |
| self.rotary_emb = PhiLinearScalingRotaryEmbedding( | |
| int(self.partial_rotary_factor * self.head_dim), | |
| max_position_embeddings=self.max_position_embeddings, | |
| scaling_factor=scaling_factor, | |
| base=self.rope_theta, | |
| ) | |
| elif scaling_type == "dynamic": | |
| self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding( | |
| int(self.partial_rotary_factor * self.head_dim), | |
| max_position_embeddings=self.max_position_embeddings, | |
| scaling_factor=scaling_factor, | |
| base=self.rope_theta, | |
| ) | |
| else: | |
| raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states, key_states, value_states = self.Wqkv(hidden_states).chunk( | |
| 3, dim=-1 | |
| ) | |
| query_states = query_states.view( | |
| bsz, q_len, self.num_heads, self.head_dim | |
| ).transpose(1, 2) | |
| key_states = key_states.view( | |
| bsz, q_len, self.num_key_value_heads, self.head_dim | |
| ).transpose(1, 2) | |
| value_states = value_states.view( | |
| bsz, q_len, self.num_key_value_heads, self.head_dim | |
| ).transpose(1, 2) | |
| kv_seq_len = key_states.shape[-2] | |
| if past_key_value is not None: | |
| if self.layer_idx is None: | |
| raise ValueError( | |
| f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
| "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
| "with a layer index." | |
| ) | |
| kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
| cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
| # Partial rotary embedding | |
| query_rot, query_pass = ( | |
| query_states[..., : self.rotary_emb.dim], | |
| query_states[..., self.rotary_emb.dim :], | |
| ) | |
| key_rot, key_pass = ( | |
| key_states[..., : self.rotary_emb.dim], | |
| key_states[..., self.rotary_emb.dim :], | |
| ) | |
| # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] | |
| query_rot, key_rot = apply_rotary_pos_emb( | |
| query_rot, key_rot, cos, sin, position_ids | |
| ) | |
| # [batch_size, seq_length, num_heads, head_dim] | |
| query_states = torch.cat((query_rot, query_pass), dim=-1) | |
| key_states = torch.cat((key_rot, key_pass), dim=-1) | |
| if past_key_value is not None: | |
| cache_kwargs = { | |
| "sin": sin, | |
| "cos": cos, | |
| "partial_rotation_size": self.rotary_emb.dim, | |
| "cache_position": cache_position, | |
| } | |
| key_states, value_states = past_key_value.update( | |
| key_states, value_states, self.layer_idx, cache_kwargs | |
| ) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| # Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow | |
| attn_weights = torch.matmul( | |
| query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3) | |
| ) / math.sqrt(self.head_dim) | |
| if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| if attention_mask is not None: | |
| causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| attn_weights += causal_mask | |
| # upcast attention to fp32 | |
| attn_weights = nn.functional.softmax( | |
| attn_weights, dim=-1, dtype=torch.float32 | |
| ).to(value_states.dtype) | |
| attn_weights = nn.functional.dropout( | |
| attn_weights, p=self.attention_dropout, training=self.training | |
| ) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
| attn_output = self.out_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class PhiFlashAttention2(PhiAttention): | |
| """ | |
| Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays | |
| untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
| flash attention and deal with padding tokens in case the input contains any of them. | |
| """ | |
| # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
| # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
| # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
| self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| # PhiFlashAttention2 attention does not support output_attentions | |
| output_attentions = False | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states, key_states, value_states = self.Wqkv(hidden_states).chunk( | |
| 3, dim=-1 | |
| ) | |
| # Flash attention requires the input to have the shape | |
| # batch_size x seq_length x head_dim x hidden_dim | |
| # therefore we just need to keep the original shape | |
| query_states = query_states.view( | |
| bsz, q_len, self.num_heads, self.head_dim | |
| ).transpose(1, 2) | |
| key_states = key_states.view( | |
| bsz, q_len, self.num_key_value_heads, self.head_dim | |
| ).transpose(1, 2) | |
| value_states = value_states.view( | |
| bsz, q_len, self.num_key_value_heads, self.head_dim | |
| ).transpose(1, 2) | |
| kv_seq_len = key_states.shape[-2] | |
| if past_key_value is not None: | |
| kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
| cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
| # Partial rotary embedding | |
| query_rot, query_pass = ( | |
| query_states[..., : self.rotary_emb.dim], | |
| query_states[..., self.rotary_emb.dim :], | |
| ) | |
| key_rot, key_pass = ( | |
| key_states[..., : self.rotary_emb.dim], | |
| key_states[..., self.rotary_emb.dim :], | |
| ) | |
| # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] | |
| query_rot, key_rot = apply_rotary_pos_emb( | |
| query_rot, key_rot, cos, sin, position_ids | |
| ) | |
| # [batch_size, seq_length, num_heads, head_dim] | |
| query_states = torch.cat((query_rot, query_pass), dim=-1) | |
| key_states = torch.cat((key_rot, key_pass), dim=-1) | |
| if past_key_value is not None: | |
| cache_kwargs = { | |
| "sin": sin, | |
| "cos": cos, | |
| "partial_rotation_size": self.rotary_emb.dim, | |
| "cache_position": cache_position, | |
| } | |
| key_states, value_states = past_key_value.update( | |
| key_states, value_states, self.layer_idx, cache_kwargs | |
| ) | |
| # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
| # to be able to avoid many of these transpose/reshape/view. | |
| query_states = query_states.transpose(1, 2) | |
| key_states = key_states.transpose(1, 2) | |
| value_states = value_states.transpose(1, 2) | |
| attn_dropout = self.attention_dropout if self.training else 0.0 | |
| # In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
| # therefore the input hidden states gets silently casted in float32. Hence, we need | |
| # cast them back in the correct dtype just to be sure everything works as expected. | |
| # This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
| # in fp32. | |
| if query_states.dtype == torch.float32: | |
| if torch.is_autocast_enabled(): | |
| target_dtype = torch.get_autocast_gpu_dtype() | |
| # Handle the case where the model is quantized | |
| elif hasattr(self.config, "_pre_quantization_dtype"): | |
| target_dtype = self.config._pre_quantization_dtype | |
| else: | |
| target_dtype = self.q_proj.weight.dtype | |
| logger.warning_once( | |
| f"The input hidden states seems to be silently casted in float32, this might be related to" | |
| f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
| f" {target_dtype}." | |
| ) | |
| query_states = query_states.to(target_dtype) | |
| key_states = key_states.to(target_dtype) | |
| value_states = value_states.to(target_dtype) | |
| attn_output = _flash_attention_forward( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attention_mask, | |
| q_len, | |
| position_ids=position_ids, | |
| dropout=attn_dropout, | |
| softmax_scale=None, | |
| use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
| is_causal=self.is_causal, | |
| ) | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
| attn_output = self.out_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class PhiSdpaAttention(PhiAttention): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.require_contiguous_qkv = version.parse( | |
| get_torch_version() | |
| ) < version.parse("2.2.0") | |
| """ | |
| SDPA attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
| `PhiAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
| SDPA API. | |
| """ | |
| # Adapted from PhiAttention.forward | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if output_attentions: | |
| # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
| logger.warning_once( | |
| "PhiModel is using PhiSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not " | |
| "support `output_attentions=True`. Falling back to the manual attention implementation, but specifying " | |
| "the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can " | |
| 'be removed using the argument `attn_implementation="eager"` when loading the model.' | |
| ) | |
| return super().forward( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states, key_states, value_states = self.Wqkv(hidden_states).chunk( | |
| 3, dim=-1 | |
| ) | |
| query_states = query_states.view( | |
| bsz, q_len, self.num_heads, self.head_dim | |
| ).transpose(1, 2) | |
| key_states = key_states.view( | |
| bsz, q_len, self.num_key_value_heads, self.head_dim | |
| ).transpose(1, 2) | |
| value_states = value_states.view( | |
| bsz, q_len, self.num_key_value_heads, self.head_dim | |
| ).transpose(1, 2) | |
| kv_seq_len = key_states.shape[-2] | |
| if past_key_value is not None: | |
| if self.layer_idx is None: | |
| raise ValueError( | |
| f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
| "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
| "with a layer index." | |
| ) | |
| kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
| cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
| # Partial rotary embedding | |
| query_rot, query_pass = ( | |
| query_states[..., : self.rotary_emb.dim], | |
| query_states[..., self.rotary_emb.dim :], | |
| ) | |
| key_rot, key_pass = ( | |
| key_states[..., : self.rotary_emb.dim], | |
| key_states[..., self.rotary_emb.dim :], | |
| ) | |
| # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] | |
| query_rot, key_rot = apply_rotary_pos_emb( | |
| query_rot, key_rot, cos, sin, position_ids | |
| ) | |
| # [batch_size, seq_length, num_heads, head_dim] | |
| query_states = torch.cat((query_rot, query_pass), dim=-1) | |
| key_states = torch.cat((key_rot, key_pass), dim=-1) | |
| if past_key_value is not None: | |
| cache_kwargs = { | |
| "sin": sin, | |
| "cos": cos, | |
| "partial_rotation_size": self.rotary_emb.dim, | |
| "cache_position": cache_position, | |
| } | |
| key_states, value_states = past_key_value.update( | |
| key_states, value_states, self.layer_idx, cache_kwargs | |
| ) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| causal_mask = attention_mask | |
| if attention_mask is not None: | |
| causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | |
| # SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom | |
| # attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0. | |
| # Reference: https://github.com/pytorch/pytorch/issues/112577 | |
| if ( | |
| self.require_contiguous_qkv | |
| and query_states.device.type == "cuda" | |
| and attention_mask is not None | |
| ): | |
| query_states = query_states.contiguous() | |
| key_states = key_states.contiguous() | |
| value_states = value_states.contiguous() | |
| # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
| # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
| is_causal = True if causal_mask is None and q_len > 1 else False | |
| attn_output = torch.nn.functional.scaled_dot_product_attention( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attn_mask=causal_mask, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| is_causal=is_causal, | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, None, past_key_value | |
| PHI_ATTENTION_CLASSES = { | |
| "eager": PhiAttention, | |
| "flash_attention_2": PhiFlashAttention2, | |
| "sdpa": PhiSdpaAttention, | |
| } | |
| class PhiDecoderLayer(nn.Module): | |
| def __init__(self, config: PhiConfig, layer_idx: int): | |
| super().__init__() | |
| self.mixer = PHI_ATTENTION_CLASSES[config._attn_implementation]( | |
| config, layer_idx=layer_idx | |
| ) | |
| self.mlp = PhiMLP(config) | |
| self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| **kwargs, | |
| ) -> Tuple[ | |
| torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] | |
| ]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): | |
| input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range | |
| `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
| cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
| Indices depicting the position of the input sequence tokens in the sequence | |
| kwargs (`dict`, *optional*): | |
| Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | |
| into the model | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.ln(hidden_states) | |
| # Self Attention | |
| attn_outputs, self_attn_weights, present_key_value = self.mixer( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| ) | |
| attn_outputs = self.resid_dropout(attn_outputs) | |
| feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) | |
| hidden_states = attn_outputs + feed_forward_hidden_states + residual | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| PHI_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`PhiConfig`]): | |
| Model configuration class with all the parameters of the model. Initializing with a config file does not | |
| load the weights associated with the model, only the configuration. Check out the | |
| [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| class PhiPreTrainedModel(PreTrainedModel): | |
| config_class = PhiConfig | |
| base_model_prefix = "model" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["PhiDecoderLayer"] | |
| _skip_keys_device_placement = "past_key_values" | |
| _supports_flash_attn_2 = True | |
| _supports_sdpa = True | |
| _supports_cache_class = True | |
| def _init_weights(self, module): | |
| std = self.config.initializer_range | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| class Embedding(nn.Module): | |
| def __init__(self, config: PhiConfig): | |
| super().__init__() | |
| self.wte = nn.Embedding( | |
| config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id | |
| ) | |
| def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: | |
| return self.wte(input_ids) | |
| PHI_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | |
| `past_key_values`). | |
| If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
| and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
| information on the default strategy. | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.n_positions - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
| Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
| blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | |
| returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | |
| Two formats are allowed: | |
| - a [`~cache_utils.Cache`] instance; | |
| - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
| shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | |
| cache format. | |
| The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | |
| legacy cache format will be returned. | |
| If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
| have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
| of shape `(batch_size, sequence_length)`. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
| Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | |
| this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | |
| the complete sequence length. | |
| """ | |
| class PhiModel(PhiPreTrainedModel): | |
| """ | |
| Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`] | |
| Args: | |
| config: PhiConfig | |
| """ | |
| def __init__(self, config: PhiConfig): | |
| super().__init__(config) | |
| self.padding_idx = config.pad_token_id | |
| self.vocab_size = config.vocab_size | |
| self.embd = Embedding(config) | |
| self.embed_dropout = nn.Dropout(config.embd_pdrop) | |
| self.h = nn.ModuleList( | |
| [ | |
| PhiDecoderLayer(config, layer_idx) | |
| for layer_idx in range(config.num_hidden_layers) | |
| ] | |
| ) | |
| self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
| self._use_sdpa = config._attn_implementation == "sdpa" | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embd.wte | |
| def set_input_embeddings(self, value): | |
| self.embd.wte = value | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPast]: | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| if (input_ids is None) ^ (inputs_embeds is not None): | |
| raise ValueError( | |
| "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
| ) | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| use_legacy_cache = False | |
| if use_cache and not isinstance(past_key_values, Cache) and not self.training: | |
| use_legacy_cache = True | |
| past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
| logger.warning_once( | |
| "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " | |
| "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/internal/generation_utils#transformers.Cache)" | |
| ) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embd(input_ids) | |
| if cache_position is None: | |
| past_seen_tokens = ( | |
| past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| ) | |
| cache_position = torch.arange( | |
| past_seen_tokens, | |
| past_seen_tokens + inputs_embeds.shape[1], | |
| device=inputs_embeds.device, | |
| ) | |
| if position_ids is None: | |
| position_ids = cache_position.unsqueeze(0) | |
| causal_mask = self._update_causal_mask( | |
| attention_mask, | |
| inputs_embeds, | |
| cache_position, | |
| past_key_values, | |
| output_attentions, | |
| ) | |
| hidden_states = inputs_embeds | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| next_decoder_cache = None | |
| for decoder_layer in self.h: | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| decoder_layer.__call__, | |
| hidden_states, | |
| causal_mask, | |
| position_ids, | |
| output_attentions, | |
| use_cache, | |
| past_key_values, | |
| cache_position, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=causal_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_values, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = None | |
| if use_cache: | |
| next_cache = ( | |
| next_decoder_cache.to_legacy_cache() | |
| if use_legacy_cache | |
| else next_decoder_cache | |
| ) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask | |
| def _update_causal_mask( | |
| self, | |
| attention_mask: torch.Tensor, | |
| input_tensor: torch.Tensor, | |
| cache_position: torch.Tensor, | |
| past_key_values: Cache, | |
| output_attentions: bool, | |
| ): | |
| # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static | |
| # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. | |
| # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using | |
| # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 | |
| if self.config._attn_implementation == "flash_attention_2": | |
| if attention_mask is not None and 0.0 in attention_mask: | |
| return attention_mask | |
| return None | |
| # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
| # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
| # to infer the attention mask. | |
| past_seen_tokens = ( | |
| past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| ) | |
| using_static_cache = isinstance(past_key_values, StaticCache) | |
| # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
| if ( | |
| self.config._attn_implementation == "sdpa" | |
| and not using_static_cache | |
| and not output_attentions | |
| ): | |
| if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
| attention_mask, | |
| inputs_embeds=input_tensor, | |
| past_key_values_length=past_seen_tokens, | |
| is_training=self.training, | |
| ): | |
| return None | |
| dtype, device = input_tensor.dtype, input_tensor.device | |
| min_dtype = torch.finfo(dtype).min | |
| sequence_length = input_tensor.shape[1] | |
| if using_static_cache: | |
| target_length = past_key_values.get_max_length() | |
| else: | |
| target_length = ( | |
| attention_mask.shape[-1] | |
| if isinstance(attention_mask, torch.Tensor) | |
| else past_seen_tokens + sequence_length + 1 | |
| ) | |
| # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). | |
| causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
| attention_mask, | |
| sequence_length=sequence_length, | |
| target_length=target_length, | |
| dtype=dtype, | |
| device=device, | |
| min_dtype=min_dtype, | |
| cache_position=cache_position, | |
| batch_size=input_tensor.shape[0], | |
| ) | |
| if ( | |
| self.config._attn_implementation == "sdpa" | |
| and attention_mask is not None | |
| and attention_mask.device.type == "cuda" | |
| and not output_attentions | |
| ): | |
| # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
| # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
| # Details: https://github.com/pytorch/pytorch/issues/110213 | |
| causal_mask = AttentionMaskConverter._unmask_unattended( | |
| causal_mask, min_dtype | |
| ) | |
| return causal_mask | |
| class CausalLMHead(nn.Module): | |
| """Causal Language Modeling head. Simplified version.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.linear = nn.Linear(config.hidden_size, config.vocab_size) | |
| def forward(self, hidden_states): | |
| return self.linear(self.ln(hidden_states)) | |
| class PhiForCausalLM(PhiPreTrainedModel): | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.transformer = PhiModel(config) | |
| self.vocab_size = config.vocab_size | |
| self.lm_head = CausalLMHead(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings | |
| def get_input_embeddings(self): | |
| return self.transformer.embd.wte | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings | |
| def set_input_embeddings(self, value): | |
| self.transformer.embd.wte = value | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings | |
| def get_output_embeddings(self): | |
| return self.lm_head.linear | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head.linear = new_embeddings | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder | |
| def set_decoder(self, decoder): | |
| self.model = decoder | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder | |
| def get_decoder(self): | |
| return self.model | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| num_logits_to_keep: int = 0, | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| r""" | |
| Args: | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
| config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
| (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| num_logits_to_keep (`int`, *optional*): | |
| Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all | |
| `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that | |
| token can save memory, which becomes pretty significant for long sequences or large vocabulary size. | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, PhiForCausalLM | |
| >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1") | |
| >>> prompt = "This is an example script ." | |
| >>> inputs = tokenizer(prompt, return_tensors="pt") | |
| >>> # Generate | |
| >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
| >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| 'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str' | |
| ```""" | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.transformer( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| cache_position=cache_position, | |
| ) | |
| hidden_states = outputs[0] | |
| logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float() | |
| loss = None | |
| if labels is not None: | |
| # Upcast to float if we need to compute the loss to avoid potential precision issues | |
| logits = logits.float() | |
| # Shift so that tokens < n predict n | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
| shift_labels = shift_labels.view(-1) | |
| # Enable model parallelism | |
| shift_labels = shift_labels.to(shift_logits.device) | |
| loss = loss_fct(shift_logits, shift_labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids, | |
| inputs_embeds=None, | |
| past_key_values=None, | |
| attention_mask=None, | |
| cache_position=None, | |
| position_ids=None, | |
| use_cache=True, | |
| num_logits_to_keep=0, | |
| **kwargs, | |
| ): | |
| assert inputs_embeds is not None, "inputs_embeds is required" | |
| # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens | |
| if past_key_values is not None: | |
| # When doing custom decoding for object detection, we don't update input_ids. | |
| # So we will slice `inputs_embeds`` instead. | |
| if input_ids.shape[1] == 0: | |
| inputs_embeds = inputs_embeds[:, -cache_position.shape[0] :] | |
| else: | |
| input_ids = input_ids[:, -cache_position.shape[0] :] | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| if input_ids.shape[1] == 0: | |
| position_ids = position_ids[:, -inputs_embeds.shape[1] :] | |
| else: | |
| position_ids = position_ids[:, -input_ids.shape[1] :] | |
| # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s | |
| # `mode="reduce-overhead`, as otherwise the input `position_ids` would have various | |
| # stride during the decoding. Here, simply using `.contiguous()` is not sufficient as | |
| # in the batch size = 1 case, `position_ids` is already contiguous but with varying | |
| # stride which retriggers a capture. | |
| position_ids = position_ids.clone(memory_format=torch.contiguous_format) | |
| if cache_position[0] == 0: | |
| model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} | |
| else: | |
| # The clone here is for the same reason as for `position_ids`. | |
| if past_key_values is not None and input_ids.shape[1] == 0: | |
| model_inputs = { | |
| "input_ids": None, | |
| "inputs_embeds": inputs_embeds.clone( | |
| memory_format=torch.contiguous_format | |
| ), | |
| } | |
| else: | |
| model_inputs = { | |
| "input_ids": input_ids.clone(memory_format=torch.contiguous_format), | |
| "inputs_embeds": None, | |
| } | |
| if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: | |
| if model_inputs["inputs_embeds"] is not None: | |
| batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape | |
| device = model_inputs["inputs_embeds"].device | |
| else: | |
| batch_size, sequence_length = model_inputs["input_ids"].shape | |
| device = model_inputs["input_ids"].device | |
| dtype = self.lm_head.weight.dtype | |
| min_dtype = torch.finfo(dtype).min | |
| attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
| attention_mask, | |
| sequence_length=sequence_length, | |
| target_length=past_key_values.get_max_length(), | |
| dtype=dtype, | |
| device=device, | |
| min_dtype=min_dtype, | |
| cache_position=cache_position, | |
| batch_size=batch_size, | |
| ) | |
| model_inputs.update( | |
| { | |
| "position_ids": position_ids, | |
| "cache_position": cache_position, | |
| "past_key_values": past_key_values, | |
| "use_cache": use_cache, | |
| "attention_mask": attention_mask, | |
| "num_logits_to_keep": num_logits_to_keep, | |
| } | |
| ) | |
| return model_inputs | |