File size: 1,545 Bytes
d3cd5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from dataclasses import dataclass
from typing import Literal

import torch
from torch import nn
from torch.nn import functional as F


def gelu_approx(x):
    return F.gelu(x, approximate="tanh")


@dataclass
class LinearWeights:
    weight: torch.Tensor
    bias: torch.Tensor


def linear(x: torch.Tensor, w: LinearWeights) -> torch.Tensor:
    return F.linear(x, w.weight, w.bias)


@dataclass
class LayerNormWeights:
    weight: torch.Tensor
    bias: torch.Tensor


def layer_norm(x: torch.Tensor, w: LayerNormWeights) -> torch.Tensor:
    return F.layer_norm(x, w.bias.shape, w.weight, w.bias)


@dataclass
class MLPWeights:
    fc1: LinearWeights
    fc2: LinearWeights
    act: Literal["gelu_approx"] = "gelu_approx"


def mlp(x: torch.Tensor, w: MLPWeights) -> torch.Tensor:
    x = linear(x, w.fc1)
    if w.act == "gelu_approx":
        x = gelu_approx(x)
    else:
        raise NotImplementedError(f"Activation function {w.act} not implemented.")
    x = linear(x, w.fc2)
    return x


@dataclass
class AttentionWeights:
    qkv: LinearWeights
    proj: LinearWeights
    n_heads: int


def attn(x: torch.Tensor, w: AttentionWeights) -> torch.Tensor:
    bsz, q_len, d_model = x.shape
    n_heads, head_dim = w.n_heads, d_model // w.n_heads

    q, k, v = [
        t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
        for t in linear(x, w.qkv).chunk(3, dim=-1)
    ]
    out = F.scaled_dot_product_attention(q, k, v)
    out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
    out = linear(out, w.proj)
    return out