Spaces:
Runtime error
Runtime error
File size: 5,104 Bytes
607ecc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gin
import torch
import torch.fft
import torch.nn as nn
import torch.nn.functional as F
from .dynamic import FiLM, TimeDistributedMLP
class Sine(nn.Module):
def forward(self, x: torch.Tensor):
return torch.sin(x)
@gin.configurable
class TrainableNonlinearity(nn.Module):
def __init__(
self, channels, width, nonlinearity=nn.ReLU, final_nonlinearity=Sine, depth=3
):
super().__init__()
self.input_scale = nn.Parameter(torch.randn(1, channels, 1) * 10)
layers = []
for i in range(depth):
layers.append(
nn.Conv1d(
channels if i == 0 else channels * width,
channels * width if i < depth - 1 else channels,
1,
groups=channels,
)
)
layers.append(nonlinearity() if i < depth - 1 else final_nonlinearity())
self.net = nn.Sequential(*layers)
def forward(self, x):
return self.net(self.input_scale * x)
@gin.configurable
class NEWT(nn.Module):
def __init__(
self,
n_waveshapers: int,
control_embedding_size: int,
shaping_fn_size: int = 16,
out_channels: int = 1,
):
super().__init__()
self.n_waveshapers = n_waveshapers
self.mlp = TimeDistributedMLP(
control_embedding_size, control_embedding_size, n_waveshapers * 4, depth=4
)
self.waveshaping_index = FiLM()
self.shaping_fn = TrainableNonlinearity(
n_waveshapers, shaping_fn_size, nonlinearity=Sine
)
self.normalising_coeff = FiLM()
self.mixer = nn.Sequential(
nn.Conv1d(n_waveshapers, out_channels, 1),
)
def forward(self, exciter, control_embedding):
film_params = self.mlp(control_embedding)
film_params = F.upsample(film_params, exciter.shape[-1], mode="linear")
gamma_index, beta_index, gamma_norm, beta_norm = torch.split(
film_params, self.n_waveshapers, 1
)
x = self.waveshaping_index(exciter, gamma_index, beta_index)
x = self.shaping_fn(x)
x = self.normalising_coeff(x, gamma_norm, beta_norm)
# return x
return self.mixer(x)
class FastNEWT(NEWT):
def __init__(
self,
newt: NEWT,
table_size: int = 4096,
table_min: float = -3.0,
table_max: float = 3.0,
):
super().__init__()
self.table_size = table_size
self.table_min = table_min
self.table_max = table_max
self.n_waveshapers = newt.n_waveshapers
self.mlp = newt.mlp
self.waveshaping_index = newt.waveshaping_index
self.normalising_coeff = newt.normalising_coeff
self.mixer = newt.mixer
self.lookup_table = self._init_lookup_table(
newt, table_size, self.n_waveshapers, table_min, table_max
)
self.to(next(iter(newt.parameters())).device)
def _init_lookup_table(
self,
newt: NEWT,
table_size: int,
n_waveshapers: int,
table_min: float,
table_max: float,
):
sample_values = torch.linspace(table_min, table_max, table_size, device=next(iter(newt.parameters())).device).expand(
1, n_waveshapers, table_size
)
lookup_table = newt.shaping_fn(sample_values)[0]
return nn.Parameter(lookup_table)
def _lookup(self, idx):
return torch.stack(
[
torch.stack(
[
self.lookup_table[shaper, idx[batch, shaper]]
for shaper in range(idx.shape[1])
],
dim=0,
)
for batch in range(idx.shape[0])
],
dim=0,
)
def shaping_fn(self, x):
idx = self.table_size * (x - self.table_min) / (self.table_max - self.table_min)
lower = torch.floor(idx).long()
lower[lower < 0] = 0
lower[lower >= self.table_size] = self.table_size - 1
upper = lower + 1
upper[upper >= self.table_size] = self.table_size - 1
fract = idx - lower
lower_v = self._lookup(lower)
upper_v = self._lookup(upper)
output = (upper_v - lower_v) * fract + lower_v
return output
@gin.configurable
class Reverb(nn.Module):
def __init__(self, length_in_seconds, sr):
super().__init__()
self.ir = nn.Parameter(torch.randn(1, sr * length_in_seconds - 1) * 1e-6)
self.register_buffer("initial_zero", torch.zeros(1, 1))
def forward(self, x):
ir_ = torch.cat((self.initial_zero, self.ir), dim=-1)
if x.shape[-1] > ir_.shape[-1]:
ir_ = F.pad(ir_, (0, x.shape[-1] - ir_.shape[-1]))
x_ = x
else:
x_ = F.pad(x, (0, ir_.shape[-1] - x.shape[-1]))
return (
x
+ torch.fft.irfft(torch.fft.rfft(x_) * torch.fft.rfft(ir_))[
..., : x.shape[-1]
]
)
|