File size: 5,104 Bytes
607ecc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gin
import torch
import torch.fft
import torch.nn as nn
import torch.nn.functional as F

from .dynamic import FiLM, TimeDistributedMLP


class Sine(nn.Module):
    def forward(self, x: torch.Tensor):
        return torch.sin(x)


@gin.configurable
class TrainableNonlinearity(nn.Module):
    def __init__(
        self, channels, width, nonlinearity=nn.ReLU, final_nonlinearity=Sine, depth=3
    ):
        super().__init__()
        self.input_scale = nn.Parameter(torch.randn(1, channels, 1) * 10)
        layers = []
        for i in range(depth):
            layers.append(
                nn.Conv1d(
                    channels if i == 0 else channels * width,
                    channels * width if i < depth - 1 else channels,
                    1,
                    groups=channels,
                )
            )
            layers.append(nonlinearity() if i < depth - 1 else final_nonlinearity())

        self.net = nn.Sequential(*layers)

    def forward(self, x):
        return self.net(self.input_scale * x)


@gin.configurable
class NEWT(nn.Module):
    def __init__(
        self,
        n_waveshapers: int,
        control_embedding_size: int,
        shaping_fn_size: int = 16,
        out_channels: int = 1,
    ):
        super().__init__()

        self.n_waveshapers = n_waveshapers

        self.mlp = TimeDistributedMLP(
            control_embedding_size, control_embedding_size, n_waveshapers * 4, depth=4
        )

        self.waveshaping_index = FiLM()
        self.shaping_fn = TrainableNonlinearity(
            n_waveshapers, shaping_fn_size, nonlinearity=Sine
        )
        self.normalising_coeff = FiLM()

        self.mixer = nn.Sequential(
            nn.Conv1d(n_waveshapers, out_channels, 1),
        )

    def forward(self, exciter, control_embedding):
        film_params = self.mlp(control_embedding)
        film_params = F.upsample(film_params, exciter.shape[-1], mode="linear")
        gamma_index, beta_index, gamma_norm, beta_norm = torch.split(
            film_params, self.n_waveshapers, 1
        )

        x = self.waveshaping_index(exciter, gamma_index, beta_index)
        x = self.shaping_fn(x)
        x = self.normalising_coeff(x, gamma_norm, beta_norm)

        # return x
        return self.mixer(x)


class FastNEWT(NEWT):
    def __init__(
        self,
        newt: NEWT,
        table_size: int = 4096,
        table_min: float = -3.0,
        table_max: float = 3.0,
    ):
        super().__init__()
        self.table_size = table_size
        self.table_min = table_min
        self.table_max = table_max

        self.n_waveshapers = newt.n_waveshapers
        self.mlp = newt.mlp

        self.waveshaping_index = newt.waveshaping_index
        self.normalising_coeff = newt.normalising_coeff
        self.mixer = newt.mixer

        self.lookup_table = self._init_lookup_table(
            newt, table_size, self.n_waveshapers, table_min, table_max
        )
        self.to(next(iter(newt.parameters())).device)

    def _init_lookup_table(
        self,
        newt: NEWT,
        table_size: int,
        n_waveshapers: int,
        table_min: float,
        table_max: float,
    ):
        sample_values = torch.linspace(table_min, table_max, table_size, device=next(iter(newt.parameters())).device).expand(
            1, n_waveshapers, table_size
        )
        lookup_table = newt.shaping_fn(sample_values)[0]
        return nn.Parameter(lookup_table)

    def _lookup(self, idx):
        return torch.stack(
            [
                torch.stack(
                    [
                        self.lookup_table[shaper, idx[batch, shaper]]
                        for shaper in range(idx.shape[1])
                    ],
                    dim=0,
                )
                for batch in range(idx.shape[0])
            ],
            dim=0,
        )

    def shaping_fn(self, x):
        idx = self.table_size * (x - self.table_min) / (self.table_max - self.table_min)

        lower = torch.floor(idx).long()
        lower[lower < 0] = 0
        lower[lower >= self.table_size] = self.table_size - 1

        upper = lower + 1
        upper[upper >= self.table_size] = self.table_size - 1

        fract = idx - lower
        lower_v = self._lookup(lower)
        upper_v = self._lookup(upper)

        output = (upper_v - lower_v) * fract + lower_v
        return output


@gin.configurable
class Reverb(nn.Module):
    def __init__(self, length_in_seconds, sr):
        super().__init__()
        self.ir = nn.Parameter(torch.randn(1, sr * length_in_seconds - 1) * 1e-6)
        self.register_buffer("initial_zero", torch.zeros(1, 1))

    def forward(self, x):
        ir_ = torch.cat((self.initial_zero, self.ir), dim=-1)
        if x.shape[-1] > ir_.shape[-1]:
            ir_ = F.pad(ir_, (0, x.shape[-1] - ir_.shape[-1]))
            x_ = x
        else:
            x_ = F.pad(x, (0, ir_.shape[-1] - x.shape[-1]))
        return (
            x
            + torch.fft.irfft(torch.fft.rfft(x_) * torch.fft.rfft(ir_))[
                ..., : x.shape[-1]
            ]
        )