File size: 5,247 Bytes
607ecc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import shutil
from typing import Sequence

import gin
import numpy as np
from sklearn.model_selection import train_test_split

from .preprocess_audio import preprocess_audio
from ...utils import seed_all


def create_directory(path):
    if not os.path.isdir(path):
        try:
            os.mkdir(path)
        except OSError:
            print("Failed to create directory %s" % path)
        else:
            print("Created directory %s..." % path)
    else:
        print("Directory %s already exists. Skipping..." % path)


def create_directories(target_root, names):
    create_directory(target_root)
    for name in names:
        create_directory(os.path.join(target_root, name))


def make_splits(
    audio_list: Sequence[str],
    control_list: Sequence[str],
    splits: Sequence[str],
    split_proportions: Sequence[float],
):
    assert len(splits) == len(
        split_proportions
    ), "Length of splits and split_proportions must be equal"

    train_size = split_proportions[0] / np.sum(split_proportions)
    audio_0, audio_1, control_0, control_1 = train_test_split(
        audio_list, control_list, train_size=train_size
    )
    if len(splits) == 2:
        return {
            splits[0]: {
                "audio": audio_0,
                "control": control_0,
            },
            splits[1]: {
                "audio": audio_1,
                "control": control_1,
            },
        }
    elif len(splits) > 2:
        return {
            splits[0]: {
                "audio": audio_0,
                "control": control_0,
            },
            **make_splits(audio_1, control_1, splits[1:], split_proportions[1:]),
        }
    elif len(splits) == 1:
        return {
            splits[0]: {
                "audio": audio_list,
                "control": control_list,
            }
        }


def lazy_create_dataset(
    files: Sequence[str],
    output_directory: str,
    splits: Sequence[str],
    split_proportions: Sequence[float],
):
    audio_files = []
    control_files = []
    audio_max = 1e-5
    means = []
    stds = []
    lengths = []
    control_mean = 0
    control_std = 1

    for i, (all_audio, all_f0, all_confidence, all_loudness, all_mfcc) in enumerate(
        preprocess_audio(files)
    ):
        file = os.path.split(files[i])[-1].replace(".wav", "")
        for j, (audio, f0, confidence, loudness, mfcc) in enumerate(
            zip(all_audio, all_f0, all_confidence, all_loudness, all_mfcc)
        ):
            audio_file_name = "audio_%s_%d.npy" % (file, j)
            control_file_name = "control_%s_%d.npy" % (file, j)

            max_sample = np.abs(audio).max()
            if max_sample > audio_max:
                audio_max = max_sample

            np.save(
                os.path.join(output_directory, "temp", "audio", audio_file_name),
                audio,
            )
            control = np.stack((f0, loudness, confidence), axis=0)
            control = np.concatenate((control, mfcc), axis=0)
            np.save(
                os.path.join(output_directory, "temp", "control", control_file_name),
                control,
            )

            audio_files.append(audio_file_name)
            control_files.append(control_file_name)

            means.append(control.mean(axis=-1))
            stds.append(control.std(axis=-1))
            lengths.append(control.shape[-1])

    if len(audio_files) == 0:
        print("No datapoints to split. Skipping...")
        return

    data_mean = np.mean(np.stack(means, axis=-1), axis=-1)[:, np.newaxis]
    lengths = np.stack(lengths)[np.newaxis, :]
    stds = np.stack(stds, axis=-1)
    data_std = np.sqrt(np.sum(lengths * stds ** 2, axis=-1) / np.sum(lengths))[
        :, np.newaxis
    ]

    print("Saving dataset stats...")
    np.save(os.path.join(output_directory, "data_mean.npy"), data_mean)
    np.save(os.path.join(output_directory, "data_std.npy"), data_std)

    splits = make_splits(audio_files, control_files, splits, split_proportions)
    for split in splits:
        for audio_file in splits[split]["audio"]:
            audio = np.load(os.path.join(output_directory, "temp", "audio", audio_file))
            audio = audio / audio_max
            np.save(os.path.join(output_directory, split, "audio", audio_file), audio)
        for control_file in splits[split]["control"]:
            control = np.load(
                os.path.join(output_directory, "temp", "control", control_file)
            )
            control = (control - data_mean) / data_std
            np.save(
                os.path.join(output_directory, split, "control", control_file), control
            )


@gin.configurable
def create_dataset(
    files: Sequence[str],
    output_directory: str,
    splits: Sequence[str] = ("train", "val", "test"),
    split_proportions: Sequence[float] = (0.8, 0.1, 0.1),
    lazy: bool = True,
):
    create_directories(output_directory, (*splits, "temp"))
    for split in (*splits, "temp"):
        create_directories(os.path.join(output_directory, split), ("audio", "control"))

    if lazy:
        lazy_create_dataset(files, output_directory, splits, split_proportions)

    shutil.rmtree(os.path.join(output_directory, "temp"))