File size: 1,854 Bytes
5a3dfd3
0774187
 
5a3dfd3
 
 
 
 
 
b483613
 
5a3dfd3
 
19dac07
 
 
 
5a3dfd3
 
 
 
 
 
 
 
 
 
8a6d741
19dac07
b483613
19dac07
a01ad06
8ce9b88
a01ad06
5a3dfd3
8ce9b88
5a3dfd3
71a5343
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
os.system("gdown https://drive.google.com/uc?id=1-95IOJ-2y9BtmABiffIwndPqNZD_gLnV")
os.system("unzip big-lama.zip")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image
import numpy as np
os.mkdir("data")
os.mkdir("dataout")
model = hub.Module(name='U2Net')
def infer(img):
  basewidth = 600
  wpercent = (basewidth/float(img.size[0]))
  hsize = int((float(img.size[1])*float(wpercent)))
  img = img.resize((basewidth,hsize), Image.ANTIALIAS)
  img.save("./data/data.png")
  result = model.Segmentation(
      images=[cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)],
      paths=None,
      batch_size=1,
      input_size=320,
      output_dir='output',
      visualization=True)
  im = Image.fromarray(result[0]['mask'])
  im.save("./data/data_mask.png")
  os.system('python predict.py model.path=/home/user/app/big-lama/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
  return "./dataout/data_mask.png",im
inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="pil",label="Mask from U^2Net")]
title = "LaMa Image Inpainting"
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
examples = [
  ['person512.png']
]
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch()