Spaces:
Runtime error
Runtime error
import os | |
from PIL import Image, ImageOps | |
import math | |
import platform | |
import sys | |
import tqdm | |
import time | |
from modules import shared, images, deepbooru | |
from modules.paths import models_path | |
from modules.shared import opts, cmd_opts | |
from modules.textual_inversion import autocrop | |
def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False): | |
try: | |
if process_caption: | |
shared.interrogator.load() | |
if process_caption_deepbooru: | |
deepbooru.model.start() | |
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug) | |
finally: | |
if process_caption: | |
shared.interrogator.send_blip_to_ram() | |
if process_caption_deepbooru: | |
deepbooru.model.stop() | |
def listfiles(dirname): | |
return os.listdir(dirname) | |
class PreprocessParams: | |
src = None | |
dstdir = None | |
subindex = 0 | |
flip = False | |
process_caption = False | |
process_caption_deepbooru = False | |
preprocess_txt_action = None | |
def save_pic_with_caption(image, index, params: PreprocessParams, existing_caption=None): | |
caption = "" | |
if params.process_caption: | |
caption += shared.interrogator.generate_caption(image) | |
if params.process_caption_deepbooru: | |
if len(caption) > 0: | |
caption += ", " | |
caption += deepbooru.model.tag_multi(image) | |
filename_part = params.src | |
filename_part = os.path.splitext(filename_part)[0] | |
filename_part = os.path.basename(filename_part) | |
basename = f"{index:05}-{params.subindex}-{filename_part}" | |
image.save(os.path.join(params.dstdir, f"{basename}.png")) | |
if params.preprocess_txt_action == 'prepend' and existing_caption: | |
caption = existing_caption + ' ' + caption | |
elif params.preprocess_txt_action == 'append' and existing_caption: | |
caption = caption + ' ' + existing_caption | |
elif params.preprocess_txt_action == 'copy' and existing_caption: | |
caption = existing_caption | |
caption = caption.strip() | |
if len(caption) > 0: | |
with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file: | |
file.write(caption) | |
params.subindex += 1 | |
def save_pic(image, index, params, existing_caption=None): | |
save_pic_with_caption(image, index, params, existing_caption=existing_caption) | |
if params.flip: | |
save_pic_with_caption(ImageOps.mirror(image), index, params, existing_caption=existing_caption) | |
def split_pic(image, inverse_xy, width, height, overlap_ratio): | |
if inverse_xy: | |
from_w, from_h = image.height, image.width | |
to_w, to_h = height, width | |
else: | |
from_w, from_h = image.width, image.height | |
to_w, to_h = width, height | |
h = from_h * to_w // from_w | |
if inverse_xy: | |
image = image.resize((h, to_w)) | |
else: | |
image = image.resize((to_w, h)) | |
split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio))) | |
y_step = (h - to_h) / (split_count - 1) | |
for i in range(split_count): | |
y = int(y_step * i) | |
if inverse_xy: | |
splitted = image.crop((y, 0, y + to_h, to_w)) | |
else: | |
splitted = image.crop((0, y, to_w, y + to_h)) | |
yield splitted | |
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False): | |
width = process_width | |
height = process_height | |
src = os.path.abspath(process_src) | |
dst = os.path.abspath(process_dst) | |
split_threshold = max(0.0, min(1.0, split_threshold)) | |
overlap_ratio = max(0.0, min(0.9, overlap_ratio)) | |
assert src != dst, 'same directory specified as source and destination' | |
os.makedirs(dst, exist_ok=True) | |
files = listfiles(src) | |
shared.state.textinfo = "Preprocessing..." | |
shared.state.job_count = len(files) | |
params = PreprocessParams() | |
params.dstdir = dst | |
params.flip = process_flip | |
params.process_caption = process_caption | |
params.process_caption_deepbooru = process_caption_deepbooru | |
params.preprocess_txt_action = preprocess_txt_action | |
for index, imagefile in enumerate(tqdm.tqdm(files)): | |
params.subindex = 0 | |
filename = os.path.join(src, imagefile) | |
try: | |
img = Image.open(filename).convert("RGB") | |
except Exception: | |
continue | |
params.src = filename | |
existing_caption = None | |
existing_caption_filename = os.path.splitext(filename)[0] + '.txt' | |
if os.path.exists(existing_caption_filename): | |
with open(existing_caption_filename, 'r', encoding="utf8") as file: | |
existing_caption = file.read() | |
if shared.state.interrupted: | |
break | |
if img.height > img.width: | |
ratio = (img.width * height) / (img.height * width) | |
inverse_xy = False | |
else: | |
ratio = (img.height * width) / (img.width * height) | |
inverse_xy = True | |
process_default_resize = True | |
if process_split and ratio < 1.0 and ratio <= split_threshold: | |
for splitted in split_pic(img, inverse_xy, width, height, overlap_ratio): | |
save_pic(splitted, index, params, existing_caption=existing_caption) | |
process_default_resize = False | |
if process_focal_crop and img.height != img.width: | |
dnn_model_path = None | |
try: | |
dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv")) | |
except Exception as e: | |
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e) | |
autocrop_settings = autocrop.Settings( | |
crop_width = width, | |
crop_height = height, | |
face_points_weight = process_focal_crop_face_weight, | |
entropy_points_weight = process_focal_crop_entropy_weight, | |
corner_points_weight = process_focal_crop_edges_weight, | |
annotate_image = process_focal_crop_debug, | |
dnn_model_path = dnn_model_path, | |
) | |
for focal in autocrop.crop_image(img, autocrop_settings): | |
save_pic(focal, index, params, existing_caption=existing_caption) | |
process_default_resize = False | |
if process_default_resize: | |
img = images.resize_image(1, img, width, height) | |
save_pic(img, index, params, existing_caption=existing_caption) | |
shared.state.nextjob() | |