Spaces:
Runtime error
Runtime error
import math | |
import sys | |
import traceback | |
import importlib | |
import torch | |
from torch import einsum | |
from ldm.util import default | |
from einops import rearrange | |
from modules import shared | |
from modules.hypernetworks import hypernetwork | |
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: | |
try: | |
import xformers.ops | |
shared.xformers_available = True | |
except Exception: | |
print("Cannot import xformers", file=sys.stderr) | |
print(traceback.format_exc(), file=sys.stderr) | |
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion | |
def split_cross_attention_forward_v1(self, x, context=None, mask=None): | |
h = self.heads | |
q_in = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) | |
k_in = self.to_k(context_k) | |
v_in = self.to_v(context_v) | |
del context, context_k, context_v, x | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) | |
del q_in, k_in, v_in | |
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) | |
for i in range(0, q.shape[0], 2): | |
end = i + 2 | |
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) | |
s1 *= self.scale | |
s2 = s1.softmax(dim=-1) | |
del s1 | |
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) | |
del s2 | |
del q, k, v | |
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | |
del r1 | |
return self.to_out(r2) | |
# taken from https://github.com/Doggettx/stable-diffusion and modified | |
def split_cross_attention_forward(self, x, context=None, mask=None): | |
h = self.heads | |
q_in = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) | |
k_in = self.to_k(context_k) | |
v_in = self.to_v(context_v) | |
k_in *= self.scale | |
del context, x | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) | |
del q_in, k_in, v_in | |
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
stats = torch.cuda.memory_stats(q.device) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
gb = 1024 ** 3 | |
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() | |
modifier = 3 if q.element_size() == 2 else 2.5 | |
mem_required = tensor_size * modifier | |
steps = 1 | |
if mem_required > mem_free_total: | |
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) | |
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " | |
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") | |
if steps > 64: | |
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 | |
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' | |
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') | |
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) | |
s2 = s1.softmax(dim=-1, dtype=q.dtype) | |
del s1 | |
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) | |
del s2 | |
del q, k, v | |
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | |
del r1 | |
return self.to_out(r2) | |
def check_for_psutil(): | |
try: | |
spec = importlib.util.find_spec('psutil') | |
return spec is not None | |
except ModuleNotFoundError: | |
return False | |
invokeAI_mps_available = check_for_psutil() | |
# -- Taken from https://github.com/invoke-ai/InvokeAI -- | |
if invokeAI_mps_available: | |
import psutil | |
mem_total_gb = psutil.virtual_memory().total // (1 << 30) | |
def einsum_op_compvis(q, k, v): | |
s = einsum('b i d, b j d -> b i j', q, k) | |
s = s.softmax(dim=-1, dtype=s.dtype) | |
return einsum('b i j, b j d -> b i d', s, v) | |
def einsum_op_slice_0(q, k, v, slice_size): | |
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
for i in range(0, q.shape[0], slice_size): | |
end = i + slice_size | |
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end]) | |
return r | |
def einsum_op_slice_1(q, k, v, slice_size): | |
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v) | |
return r | |
def einsum_op_mps_v1(q, k, v): | |
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096 | |
return einsum_op_compvis(q, k, v) | |
else: | |
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1])) | |
return einsum_op_slice_1(q, k, v, slice_size) | |
def einsum_op_mps_v2(q, k, v): | |
if mem_total_gb > 8 and q.shape[1] <= 4096: | |
return einsum_op_compvis(q, k, v) | |
else: | |
return einsum_op_slice_0(q, k, v, 1) | |
def einsum_op_tensor_mem(q, k, v, max_tensor_mb): | |
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20) | |
if size_mb <= max_tensor_mb: | |
return einsum_op_compvis(q, k, v) | |
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length() | |
if div <= q.shape[0]: | |
return einsum_op_slice_0(q, k, v, q.shape[0] // div) | |
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1)) | |
def einsum_op_cuda(q, k, v): | |
stats = torch.cuda.memory_stats(q.device) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
# Divide factor of safety as there's copying and fragmentation | |
return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) | |
def einsum_op(q, k, v): | |
if q.device.type == 'cuda': | |
return einsum_op_cuda(q, k, v) | |
if q.device.type == 'mps': | |
if mem_total_gb >= 32: | |
return einsum_op_mps_v1(q, k, v) | |
return einsum_op_mps_v2(q, k, v) | |
# Smaller slices are faster due to L2/L3/SLC caches. | |
# Tested on i7 with 8MB L3 cache. | |
return einsum_op_tensor_mem(q, k, v, 32) | |
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) | |
k = self.to_k(context_k) * self.scale | |
v = self.to_v(context_v) | |
del context, context_k, context_v, x | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
r = einsum_op(q, k, v) | |
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) | |
# -- End of code from https://github.com/invoke-ai/InvokeAI -- | |
def xformers_attention_forward(self, x, context=None, mask=None): | |
h = self.heads | |
q_in = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) | |
k_in = self.to_k(context_k) | |
v_in = self.to_v(context_v) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) | |
del q_in, k_in, v_in | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) | |
out = rearrange(out, 'b n h d -> b n (h d)', h=h) | |
return self.to_out(out) | |
def cross_attention_attnblock_forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q1 = self.q(h_) | |
k1 = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q1.shape | |
q2 = q1.reshape(b, c, h*w) | |
del q1 | |
q = q2.permute(0, 2, 1) # b,hw,c | |
del q2 | |
k = k1.reshape(b, c, h*w) # b,c,hw | |
del k1 | |
h_ = torch.zeros_like(k, device=q.device) | |
stats = torch.cuda.memory_stats(q.device) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() | |
mem_required = tensor_size * 2.5 | |
steps = 1 | |
if mem_required > mem_free_total: | |
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) | |
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w2 = w1 * (int(c)**(-0.5)) | |
del w1 | |
w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) | |
del w2 | |
# attend to values | |
v1 = v.reshape(b, c, h*w) | |
w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
del w3 | |
h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
del v1, w4 | |
h2 = h_.reshape(b, c, h, w) | |
del h_ | |
h3 = self.proj_out(h2) | |
del h2 | |
h3 += x | |
return h3 | |
def xformers_attnblock_forward(self, x): | |
try: | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
b, c, h, w = q.shape | |
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) | |
q = q.contiguous() | |
k = k.contiguous() | |
v = v.contiguous() | |
out = xformers.ops.memory_efficient_attention(q, k, v) | |
out = rearrange(out, 'b (h w) c -> b c h w', h=h) | |
out = self.proj_out(out) | |
return x + out | |
except NotImplementedError: | |
return cross_attention_attnblock_forward(self, x) | |