#!/usr/bin/env python import datetime import operator import pandas as pd import tqdm.auto from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import HfApi from ragatouille import RAGPretrainedModel import gradio as gr from gradio_calendar import Calendar import datasets # --- Data Loading and Processing --- api = HfApi() INDEX_REPO_ID = "hysts-bot-data/daily-papers-abstract-index" INDEX_DIR_PATH = ".ragatouille/colbert/indexes/daily-papers-abstract-index/" api.snapshot_download( repo_id=INDEX_REPO_ID, repo_type="dataset", local_dir=INDEX_DIR_PATH, ) abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH) # Run once to initialize the retriever abstract_retriever.search("LLM") def update_abstract_index() -> None: global abstract_retriever api.snapshot_download( repo_id=INDEX_REPO_ID, repo_type="dataset", local_dir=INDEX_DIR_PATH, ) abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH) abstract_retriever.search("LLM") scheduler_abstract = BackgroundScheduler() scheduler_abstract.add_job( func=update_abstract_index, trigger="cron", minute=0, # Every hour at minute 0 timezone="UTC", misfire_grace_time=3 * 60, ) scheduler_abstract.start() def get_df() -> pd.DataFrame: df = pd.merge( left=datasets.load_dataset("hysts-bot-data/daily-papers", split="train").to_pandas(), right=datasets.load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas(), on="arxiv_id", ) df = df[::-1].reset_index(drop=True) df["date"] = df["date"].dt.strftime("%Y-%m-%d") paper_info = [] for _, row in tqdm.auto.tqdm(df.iterrows(), total=len(df)): info = row.copy() del info["abstract"] info["paper_page"] = f"https://huggingface.co/papers/{row.arxiv_id}" paper_info.append(info) return pd.DataFrame(paper_info) class Prettifier: @staticmethod def get_github_link(link: str) -> str: if not link: return "" return Prettifier.create_link("github", link) @staticmethod def create_link(text: str, url: str) -> str: return f'{text}' @staticmethod def to_div(text: str | None, category_name: str) -> str: if text is None: text = "" class_name = f"{category_name}-{text.lower()}" return f'
{text}
' def __call__(self, df: pd.DataFrame) -> pd.DataFrame: new_rows = [] for _, row in df.iterrows(): new_row = { "date": Prettifier.create_link(row.date, f"https://huggingface.co/papers?date={row.date}"), "paper_page": Prettifier.create_link(row.arxiv_id, row.paper_page), "title": row["title"], "github": self.get_github_link(row.github), "👍": row["upvotes"], "💬": row["num_comments"], } new_rows.append(new_row) return pd.DataFrame(new_rows) class PaperList: COLUMN_INFO = [ ["date", "markdown"], ["paper_page", "markdown"], ["title", "str"], ["github", "markdown"], ["👍", "number"], ["💬", "number"], ] def __init__(self, df: pd.DataFrame): self.df_raw = df self._prettifier = Prettifier() self.df_prettified = self._prettifier(df).loc[:, self.column_names] @property def column_names(self): return list(map(operator.itemgetter(0), self.COLUMN_INFO)) @property def column_datatype(self): return list(map(operator.itemgetter(1), self.COLUMN_INFO)) def search( self, start_date: datetime.datetime, end_date: datetime.datetime, title_search_query: str, abstract_search_query: str, max_num_to_retrieve: int, ) -> pd.DataFrame: df = self.df_raw.copy() df["date"] = pd.to_datetime(df["date"]) # Filter by date df = df[(df["date"] >= start_date) & (df["date"] <= end_date)] df["date"] = df["date"].dt.strftime("%Y-%m-%d") # Filter by title if title_search_query: df = df[df["title"].str.contains(title_search_query, case=False)] # Filter by abstract if abstract_search_query: results = abstract_retriever.search(abstract_search_query, k=max_num_to_retrieve) remaining_ids = set(df["arxiv_id"]) found_id_set = set() found_ids = [] for x in results: arxiv_id = x["document_id"] if arxiv_id not in remaining_ids: continue if arxiv_id in found_id_set: continue found_id_set.add(arxiv_id) found_ids.append(arxiv_id) df = df[df["arxiv_id"].isin(found_ids)].set_index("arxiv_id").reindex(index=found_ids).reset_index() df_prettified = self._prettifier(df).loc[:, self.column_names] return df_prettified paper_list = PaperList(get_df()) def update_paper_list() -> None: global paper_list paper_list = PaperList(get_df()) scheduler_data = BackgroundScheduler() scheduler_data.add_job( func=update_paper_list, trigger="cron", minute=0, # Every hour at minute 0 timezone="UTC", misfire_grace_time=60, ) scheduler_data.start() # --- Gradio App --- DESCRIPTION = "# [Daily Papers](https://huggingface.co/papers)" FOOT_NOTE = """\ Related useful Spaces: - [Semantic Scholar Paper Recommender](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) by [davanstrien](https://huggingface.co/davanstrien) - [ArXiv CS RAG](https://huggingface.co/spaces/bishmoy/Arxiv-CS-RAG) by [bishmoy](https://huggingface.co/bishmoy) - [Paper Q&A](https://huggingface.co/spaces/chansung/paper_qa) by [chansung](https://huggingface.co/chansung) """ def update_df() -> pd.DataFrame: return paper_list.df_prettified def update_num_papers(df: pd.DataFrame) -> str: return f"{len(df)} / {len(paper_list.df_raw)}" def search( start_date: datetime.datetime, end_date: datetime.datetime, search_title: str, search_abstract: str, max_num_to_retrieve: int, ) -> pd.DataFrame: return paper_list.search(start_date, end_date, search_title, search_abstract, max_num_to_retrieve) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Group(): search_title = gr.Textbox(label="Search title") with gr.Row(): with gr.Column(scale=4): search_abstract = gr.Textbox( label="Search abstract", info="The result may not be accurate as the abstract does not contain all the information.", ) with gr.Column(scale=1): max_num_to_retrieve = gr.Slider( label="Max number to retrieve", info="This is used only for search on abstracts.", minimum=1, maximum=len(paper_list.df_raw), step=1, value=100, ) with gr.Row(): start_date = Calendar(label="Start date", type="date", value="2023-05-05") end_date = Calendar(label="End date", type="date", value=datetime.datetime.utcnow().strftime("%Y-%m-%d")) num_papers = gr.Textbox(label="Number of papers", value=update_num_papers(paper_list.df_raw), interactive=False) df = gr.Dataframe( value=paper_list.df_prettified, datatype=paper_list.column_datatype, type="pandas", interactive=False, height=1000, elem_id="table", column_widths=["10%", "10%", "60%", "10%", "5%", "5%"], wrap=True, ) gr.Markdown(FOOT_NOTE) # Define the triggers and corresponding functions search_event = gr.Button("Search") search_event.click( fn=search, inputs=[start_date, end_date, search_title, search_abstract, max_num_to_retrieve], outputs=df, ).then( fn=update_num_papers, inputs=df, outputs=num_papers, queue=False, ) # Automatically trigger search when inputs change for trigger in [start_date, end_date, search_title, search_abstract, max_num_to_retrieve]: trigger.change( fn=search, inputs=[start_date, end_date, search_title, search_abstract, max_num_to_retrieve], outputs=df, ).then( fn=update_num_papers, inputs=df, outputs=num_papers, queue=False, ) # Load the initial dataframe and number of papers demo.load( fn=update_df, outputs=df, queue=False, ).then( fn=update_num_papers, inputs=df, outputs=num_papers, queue=False, ) if __name__ == "__main__": demo.queue(api_open=False).launch(show_api=False)