Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ def get_df() -> pd.DataFrame:
|
|
28 |
df_stats = datasets.load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas()
|
29 |
|
30 |
# Merge datasets on 'arxiv_id'
|
31 |
-
df = pd.merge(left=df_papers, right=df_stats, on="arxiv_id")
|
32 |
|
33 |
# Reverse the DataFrame to have the latest papers first
|
34 |
df = df[::-1].reset_index(drop=True)
|
@@ -164,7 +164,7 @@ class PaperManager:
|
|
164 |
Calculate the score of a paper based on upvotes and age.
|
165 |
This mimics the "hotness" algorithm used by platforms like Hacker News.
|
166 |
"""
|
167 |
-
upvotes = row.get('
|
168 |
date_str = row.get('date', datetime.datetime.now(timezone.utc).strftime("%Y-%m-%d"))
|
169 |
try:
|
170 |
published_time = datetime.datetime.strptime(date_str, "%Y-%m-%d").replace(tzinfo=timezone.utc)
|
@@ -190,8 +190,12 @@ class PaperManager:
|
|
190 |
df = df[df["title"].str.contains(self.current_search_query, case=False, na=False)]
|
191 |
|
192 |
if self.sort_method == "hot":
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
195 |
elif self.sort_method == "new":
|
196 |
df_sorted = df.sort_values(by='date', ascending=False) # Sort by 'date'
|
197 |
elif self.sort_method == "top":
|
@@ -677,13 +681,6 @@ with demo:
|
|
677 |
outputs=[paper_list]
|
678 |
)
|
679 |
|
680 |
-
# Footer
|
681 |
-
gr.Markdown("""
|
682 |
-
Related useful Spaces:
|
683 |
-
- [Semantic Scholar Paper Recommender](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) by [davanstrien](https://huggingface.co/davanstrien)
|
684 |
-
- [ArXiv CS RAG](https://huggingface.co/spaces/bishmoy/Arxiv-CS-RAG) by [bishmoy](https://huggingface.co/bishmoy)
|
685 |
-
- [Paper Q&A](https://huggingface.co/spaces/chansung/paper_qa) by [chansung](https://huggingface.co/chansung)
|
686 |
-
""")
|
687 |
|
688 |
|
689 |
# --- Launch the App ---
|
|
|
28 |
df_stats = datasets.load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas()
|
29 |
|
30 |
# Merge datasets on 'arxiv_id'
|
31 |
+
df = pd.merge(left=df_papers, right=df_stats, on="arxiv_id", suffixes=('_papers', '_stats'))
|
32 |
|
33 |
# Reverse the DataFrame to have the latest papers first
|
34 |
df = df[::-1].reset_index(drop=True)
|
|
|
164 |
Calculate the score of a paper based on upvotes and age.
|
165 |
This mimics the "hotness" algorithm used by platforms like Hacker News.
|
166 |
"""
|
167 |
+
upvotes = row.get('upvotes', 0) # Corrected from '👍' to 'upvotes'
|
168 |
date_str = row.get('date', datetime.datetime.now(timezone.utc).strftime("%Y-%m-%d"))
|
169 |
try:
|
170 |
published_time = datetime.datetime.strptime(date_str, "%Y-%m-%d").replace(tzinfo=timezone.utc)
|
|
|
190 |
df = df[df["title"].str.contains(self.current_search_query, case=False, na=False)]
|
191 |
|
192 |
if self.sort_method == "hot":
|
193 |
+
if not df.empty:
|
194 |
+
df = df.drop(columns=['score'], errors='ignore') # Remove existing 'score' column if present
|
195 |
+
df['score'] = df.apply(self.calculate_score, axis=1)
|
196 |
+
df_sorted = df.sort_values(by='score', ascending=False).drop(columns=['score'])
|
197 |
+
else:
|
198 |
+
df_sorted = df
|
199 |
elif self.sort_method == "new":
|
200 |
df_sorted = df.sort_values(by='date', ascending=False) # Sort by 'date'
|
201 |
elif self.sort_method == "top":
|
|
|
681 |
outputs=[paper_list]
|
682 |
)
|
683 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
684 |
|
685 |
|
686 |
# --- Launch the App ---
|